
Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

Collision Detection:
Broad Phase Adaptation from Multi-Core to Multi-GPU Architecture

Quentin Avril, Valérie Gouranton, Bruno Arnaldi

Université Européenne de Bretagne, France
INSA, INRIA, IRISA, UMR 6074, F-35043 RENNES

email: {quentin.avril, valerie.gouranton, bruno.arnaldi}@irisa.fr

Abstract

We present in this paper several contributions on the
collision detection optimization centered on hardware
performance. We focus on the broad phase which is
the first step of the collision detection process and pro-
pose three new ways of parallelization of the well-
known ”Sweep and Prune” algorithm. We first de-
veloped a multi-core model that takes into account the
number of available cores. Multi-core architecture en-
ables us to distribute geometric computations with use
of multi-threading. Critical writing section and threads
idling have been minimized by introducing new data
structures for each thread. Programming with direc-
tives, like OpenMP, appears to be a good compro-
mise for code portability. We then proposed a new
GPU-based algorithm also based on the ”Sweep and
Prune” that has been adapted to multi-GPU architec-
tures. Our technique is based on a spatial subdivision
method used to distribute computations among GPUs.
Results show that significant speed-up can be obtained
by passing from 1 to 4 GPUs in a large-scale environ-
ment.

Keywords: Collision Detection, High Performance

Digital Peer Publishing Licence
Any party may pass on this Work by electronic
means and make it available for download under
the terms and conditions of the current version
of the Digital Peer Publishing Licence (DPPL).
The text of the licence may be accessed and
retrieved via Internet at
http://www.dipp.nrw.de/.

First presented at the Virtual Reality International Conference of 2011

Computing, GPGPU, Multi-CPU

1 Introduction

Collision detection is a well-studied and still active re-
search field in which the main problem is to determine
how and if one or more objects collide or will collide
in a virtual environment. Many fields are concerned by
collision detection, including physical-based simula-
tion, computer animation, robotics, mechanical simu-
lations (medical, biology, car industry...), haptic appli-
cations and video games. In these applications, real-
time performance, efficiency and robustness are key
issues. In the field of Virtual Reality, physical virtual
environments in digital mock-ups and industrial ap-
plications are now commonplace, and are of increas-
ing complexity. The expected level of real-time per-
formance is becoming harder to ensure in such large-
scale virtual environments. Unsurprisingly, collision
detection has been an integral part of virtual reality
bottlenecks for over thirty years. Recent years have
seen impressive advances in collision detection algo-
rithms. However, most algorithms remain unprepared
for the new hardware architecture (multi-core, multi-
processor, multi-GPU, etc.). The use of parallel pro-
cessing has become necessary to take advantage of
recent gains of Moore’s Law. During several years,
processor specialists were able to provide clock fre-
quency increases and parallelism improvements in in-
struction sets. In that way, single threaded applica-
tions ran much faster on a new generation of proces-
sors without any modification. Now, to have a bet-
ter management of the power consumption, they pro-
mote multi-core architectures. It is no longer possible
to rely on the evolution of processing power to over-
come the problem of real-time collision detection. The

urn:nbn:de:0009-6-39893, ISSN 1860-2037

http://www.dipp.nrw.de/


Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

impressive power evolution of graphics hardware and
multi-GPU platforms is also an important way of algo-
rithm improvements and speed-ups. With these major
upheavals in computer architecture it is now essential
to take into account run-time architectures to improve
collision detection performance.

In this paper, we propose new models of collision
detection algorithms able to run on new hardware ar-
chitecture. We focus on three different kinds of archi-
tecture: multi-core, GPU and multi-GPU. We have de-
veloped three new broad-phase-based algorithms that
take into account the run-time architecture.

The rest of our paper is organized as follows: in sec-
tion 2 we present the evolution of CPUs and GPUs in
the last few years. In section 3 we report related work
on collision detection and focus on the multi-core and
GPU-based collision detection algorithms in parallel
programming. Section 4 presents our new multi-core
algorithm followed by the Multi-GPU one in section 5.
Both sections show the model and techniques we used
to develop the algorithm and also present performance
results. We then conclude and open on future works in
section 6.

2 Architecture Evolution

In this section, we briefly present the evolution of
CPUs and GPUs in the last few years. We first de-
scribe the emergence and spread of multi-core pro-
cessors, followed in a second step by the impressive
evolution of GPUs in terms of computation power and
ease of use.

2.1 From Sequential CPU to Multi-core Ar-
chitecture

Compared to the actual outlook, it seems clear that
Gordon Moore was a lucky man. Since 1965, he pre-
dicts a duplication of the number of transistors on a
microprocessor every two years. During more than
forty years, this guesswork seems exact but we know
now that physical limits (power and heat) prevent this
duplication. What is the solution to keep alive Moore
law? You make more cores. Nowadays, the trend tends
to the duplication of cores in computers and the use of
parallel architecture. The first personal computer with
a core duo arrived in 2005 with AMD1 followed by
Intel2

1www.amd.com

Figure 1: Collision detection pipeline.

3 Related Work

We present here the collision detection field followed
by the evolution of CPU and GPU processors. We then
present how this evolution has led to setting up parallel
solutions for collision detection to speed-up the com-
putation time.

3.1 Collision Detection

Last decade has seen an impressive evolution of vir-
tual reality applications and more precisely of colli-
sion detection algorithms in terms of the computa-
tional bottleneck. Collision detection is a wide field
dealing with, apparently, an easy problem: determin-
ing if two (or several) objects collide. It is used in
several domains namely physically-based simulation,
computer animation, robotics, mechanical simulations
(medicine, biology, car industry), haptic applications
and video games. All these applications have different
constraints (real-time performance, efficiency and ro-
bustness ). It has generated a wide range of problems:
convex or non-convex objects, 2-Body or N-Body sim-
ulations, rigid or deformable objects, continual or dis-
crete methods. Algorithms are also dependent on the
geometric model formalism (polygonal, Constructive
Solid Geometry (CSG), implicit or parametric func-
tions). All of these problems reveal the diversity of
this field of study. For more details we refer to surveys
on the topic [LG98, JTT01, TKH+05, KHI+07].

Given n moving objects in a virtual environment,
testing all object pairs tend to perform n2 pairwise
checks. When n is large it becomes a computational
bottleneck. Collision detection is represented and built
as a pipeline (cf Figure 1) [Hub95]. It is composed
by two main parts: broad phase and narrow phase. A
parallel and adaptive collision detection pipeline run-
ning on a multi-core architecture have been proposed
[AGA10b]. The goal of this pipeline is to apply suc-
cessive filters in order to break down the O(n2) com-
plexity. These filters provide an increasing efficiency
and robustness during the pipeline traversal. In the fol-

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

lowing, we present these parts of the pipeline, broad
phase in section 3.1.1 and narrow phase in section
3.1.2.

3.1.1 Broad phase

The first part of the pipeline, called the broad phase, is
in charge of a quick and efficient removal of the object
pairs that are not in collision. Broad-phase algorithms
are classified into four main families [KHI+07]:

Brute-force approaches are based on the compar-
ison of the overall bounding volumes of objects to
determine if they are in collision or not. This test is
very exhaustive because of its n2 pairwise checks. A
lot of bounding volumes have been proposed such
as sphere, Axis-Aligned-Bounding-Box (AABB)
[Ber97], Oriented-Bounding-Box (OBB) [GLM96]
and many others.

Spatial partitioning methods are based on the
principle that if two objects are situated in distant
space sides, they have no chance to collide during the
next time step. Several methods have been proposed
to divide space into unit cells: regular grid, octree
[BT95], quad-tree, Binary Space Partitioning (BSP),
k-d tree structure [BF79] or voxels.

Topological methods are based on the positions of
objects in relation to others. A couple of objects that
is too far from one another is deleted. The algorithm
termed as ”Sweep and prune” [Eri05] and referenced
in related publications like Cohen et al. [CLMP95] is
also known as ”sort and sweep” from David Baraff’s
Ph.D thesis [Bar92]. It is one of the most used meth-
ods in the broad-phase algorithms because it provides
an efficient and quick pair removal and it does not de-
pend on the object complexity. The sequential algo-
rithm of ”Sweep and Prune” takes as input the overall
objects of the environment and feeds as output a list
of pairs of collided objects. The algorithm is divided
into two principal parts. The first one is in charge of
the bounding volume update of each active virtual ob-
ject. Most of the time, the bounding volumes used are
AABBs that are aligned on the environment axis (cf.
Figure 2). The second part is in charge of the detection
of the overlapping between objects. To do that a pro-
jection of higher and upper bounds on the three axes of
coordinates of each AABB is made. Then, we obtain
three lists with overlap pairs on each axis (x, y and z).

Figure 2: ”Sweep and Prune” algorithm on x and y
axis with a non-overlapping condition (left) and an
overlapping one (right).

We can notice two related but different concepts on the
way the ”Sweep and Prune” operates internally: by
starting from scratch each time or by updating inter-
nal structures. To differentiate them a name was given
to each method, the first type is called brute-force and
the second type persistent. A pair that is still alive af-
ter this test means that its objects are considered as in
potential collision. This pair is then transmitted to the
narrow phase.

3.1.2 Narrow phase

Colliding object pairs are then given to the narrow
phase that performs an exact collision detection. We
can classify narrow-phase algorithms into four main
families [KHI+07]:
Feature-based algorithms work on objects primi-
tives: faces (triangle-triangle test [LAM01]), edges
and vertices. This family appears in 1991 with the
Lin-Canny approach [LC91] or Voronoı̈ Marching that
proposed to divide space around objects in Voronoı̈ re-
gions that enable to detect closest features pairs be-
tween polyhedrons.
Simplex-based algorithms of whom the most fa-
mous one is the GJK algorithm [GJK88] that uses
Minkowski difference on polyhedrons. Two convex
objects collide if and only if their Minkowski differ-
ence contains the origin.
Image-space-based algorithms work using image-
space occlusions queries that are suitable to be used
on graphics hardware (GPU). They rasterize objects
to perform either a 2D or 2.5D overlap test in screen
space [BW04]. We further develop this part in the par-
allel section.
Bounding-volume-based algorithms are used in
most strategies and highly improve performance.
Bounding volume hierarchies (BVH) allow arranging

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

bounding volumes into a tree hierarchy (binary tree,
quad tree...) in order to reduce the number of tests
to perform. A description on these BVH and a com-
parison between their performance can be found in
[Eri05]. Deformable objects are very challenging for
BVH because hierarchy structures have to be updated
when an object deforms [Ber97, TKH+05].

3.2 Parallel Collision Detection

The parallel solution of collision detection algorithms
is a recent field in high-performance computing. We
can distinguish three different families of algorithms,
namely: GPU-based, CPU-based and hybrid-based.

3.2.1 GPU-based algorithms

The GPU-based family is used to perform collision de-
tection for few years using typical GPU solutions but it
becomes more and more used to perform non-common
GPU solutions. The algorithms that are based on the
image-space we call ”typical GPU solutions”. Image-
space-based algorithms work using image-space oc-
clusion queries that are suitable to be used on graphics
hardware. They rasterize objects to perform either a
2D or 2.5D overlap test in screen space [BW04]. Non-
common GPU solutions are more recent ones gener-
ally developed with CUDA and not using image space
to detect collisions.

Cinder [KP03] is an algorithm exploiting GPU to
implement a ray-casting method to detect static in-
terference between solid polyhedral objects. The al-
gorithm is linear in relation to the number of objects
and number of polygons in the environment. It also
requires no preprocessing or special data structures.
Other methods have been proposed using ray-casting,
Hermann et al. [HFR08] use it to detect collision and
to create contact forces. GPU-based algorithms for
self-collision and cloth animation have also been in-
troduced by Govindaraju et al. [GLM05b, GLM05a].
Juarez-Comboni et al. [JCD05] describe the use of
several GPUs during the collision detection process.
One GPU is in charge of the collision detection pro-
cess using a simple boundary volume collision query.
The other one is in charge of the rendering operations.
An algorithm using Layered Depth Images (LDI) to
detect collision and create physical reaction, has been
proposed [FBAF08]. It has been developed to run on
a single GPU. An LDI is a representation and render-
ing method for objects. Similar to a two-dimensional

image, the LDI consists of an array of pixels. Con-
trary to a 2D image, an LDI pixel has depth informa-
tion and there are multiple layers at a pixel location.
The LDI algorithm has been introduced by Shade et al.
[SGHS98] to represent multiple geometric layers from
one viewpoint. Heidelberger et al. [HTG03, HTG04]
have extended the model of LDI to build geometri-
cal models of volume intersections. A solution using
image-space visibility queries has been proposed for
the broad phase [GRLM03].

A recent work uses thread and data parallelism on a
single GPU to perform fast hierarchy construction, up-
dating, and traversal using tight-fitting bounding vol-
umes such as oriented bounding boxes (OBB) and
rectangular swept spheres (RSS) [LMM10]. We have
also proposed a solution based on a GPU mapping
function that enables GPU threads to determine the
objects pair to compute without any global memory
access using a square root approximation technique
based on Newton’s estimation [AGA12].

3.2.2 CPU-based algorithms

The pipeline has never been parallelized but Zach-
mann [Zac01] made an evaluation of the perfor-
mance of a theoretically parallelized back-end of the
pipeline and showed that if the environment density
is large compared to the number of processors, then
good speed-ups can be noticed. Multi-processor ma-
chines are also used to perform collision detection
[KSTK95]. Depth-first traversal of bounding volumes
tree traversal (BVTT) and parallel cloth simulation
[SSIF09] are good instances of this kind of work.
Dodier et al. [DLAG13] have proposed a distributed
and anticipative model for collision detection on dis-
tributed systems such as PC clusters. Their model al-
lows to break synchronism constraints for the collision
detection process that allows the simulation to run in a
decentralized and distributed fashion.

Few papers appeared dealing with new parallel col-
lision detection algorithms using multi-core architec-
ture. A new task splitting approach for implicit time
integration and collision handling on a multi-core ar-
chitecture has been proposed [TPB08]. Tang et al.
[TMT08] propose to use a hierarchical representation
to accelerate collision detection queries and an incre-
mental algorithm exploiting temporal coherence. The
overall is distributed among multiple cores. They ob-
tained a 4X-6X speed-up on a 8-core processor based
on several deformable models. Kim et al [KHY08]

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

Figure 3: Our parallel broad-phase algorithm. Paral-
lelization of the update AABB part and the calculate
overlapping pair one with a synchronization point be-
tween them.

propose to use a feature-based bounding volume hi-
erarchy (BVH) to improve performances of continu-
ous collision detection. They also propose novel task
decomposition methods for their BVH-based collision
detection and dynamic task assignment methods. They
obtained a 7X-8X speed-up using a 8-core architecture
compared to a single-core. Hermann et al. [HRF09]
propose a parallelization of interactive physical simu-
lations. They obtain a 14X-16X speed-up on a 16-core
architecture compared to a single-core.

3.2.3 Hybrid-based algorithms

More and more papers appear dealing with new hy-
brid solutions that run on multi-core and multi-GPU
architecture. Kim et al. [KHH+09] have presented an
hybrid parallel continuous collision detection method
HPCCD based on a bounding volume hierarchy. Re-
cently, Pabst et al. [PKS10] have presented a new hy-
brid CPU/GPU method for rigid and deformable ob-
jects based on spatial subdivision. Broad and narrow
phases are both executed on a multi-GPU architecture.

3.3 Positioning

Related work lets appear that many studies have been
made to improve efficiency and performance of colli-
sion detection algorithms. The use of parallelism is be-
coming commonplace to address the problem of real-
time collision detection [AGA09]. Thus, only fine-
grain parallelizations have been done on algorithms
and, for the moment, there is no work on a global par-
allelization of the pipeline stages and on its adaptation
on any number of cores.

4 Multi-Core Broad Phase

The architecture of collision detection algorithms
needs to be improved to face real-time interaction. In
this way, we focus on an essential step of the collision
detection pipeline: the broad phase. More precisely,
our algorithm is an implementation of the ”Sweep
and Prune”[CLMP95] on a multi-core architecture
[AGA10a].

4.1 Multi-Threaded Algorithm

Multi-core architecture enable to separate collision de-
tection computations on available cores. But computa-
tions can not be separated on the way without a special
data structure. To fully exploit multi-core architecture,
critical sections, threads idling and cores synchroniza-
tion have to be taken into account and minimized or
avoided. To parallelize the algorithm we have decided
to use OpenMP3 because of the directives that allow
to keep the same code (with few algorithmic modifica-
tions on the data structure) and to focus on the direc-
tives. Even if IntelTBB provides better performance,
it is more complex to program with and it generates
specific code, unable to work without the IntelTBB li-
braries.

A simplified scheme of our model is in Figure 3.
We can notice the parallelization of the two principal
parts of the algorithm with a synchronization between
both. The number of threads that are created depends
on the number of available cores. As a thread is only
in charge of geometric computations and does not wait
for anything, creating more than one thread per core
will increase computation time. In the first step of the
algorithm, each thread works on n

c objects where n
is the number of objects in the environment and c the
number of cores. It is possible to divide objects per
threads because AABB update computation does not
depend on the object complexity, the time spent per
object by a thread is almost homogeneous. Compared
to the sequential algorithm where the newly computed
bounding volume is written on the way in a data struc-
ture, we cannot use the same scheme without avoiding
critical writing section between threads. That is why
we introduce a new smallest data storage used by each
thread to put the newly computed bounding volume.
This new structure is an array dynamically allocated
in relation to the number of cores and objects. Syn-
chronization between this two steps is compulsory to

3OpenMP - http://openmp.org/wp/

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

Figure 4: Benchmarks: We used several benchmark
models to measure collision detection time: 10K balls
of 2K polygons each falling in simple environment of
600 polygons (= 1.1M polygons), 20K cubes of 12
polygons each fallen on complex environment of 300K
(= 420K polygons) and 3.5K concave shapes (skittles
of 20K each) falling on a plan. We only performed test
on n-body simulation of rigid bodies using AABB as
bounding volume.

merge all the new bounding volumes in the same data
structure. We only merge thread array pointers to re-
duce synchronization time.

In the second part of the algorithm, each thread
works on (n2−n)

2 /c pairs of objects where c is still the
number of cores. Like in the first part, each computa-
tion made by a thread is an overlapping test between
object coordinates so it does not depend on the object
complexity. To avoid critical section between threads
we use a similar technique where each thread is fit-
ted with its own data storage to put objects pairs with
overlapped coordinates. All pairs of objects in colli-
sion are merged at the end of the overall computation
to create the list of pairs of objects in collision. Then,
this new list of pairs is given to the narrow phase that
performs an exact collision detection test. This kind of
broad-phase algorithm is well-suited to the paralleliza-
tion because there is no dependency between compu-
tations. They can be distributed among 2, 4, 8 or more
cores without disturbing results.

4.2 Results

In this section we present main results of computation
time speed-up. Those tests were performed through

Cubes Balls Skittles
1 core 8,89ms 4,45ms 1,6ms
2 cores 4,96ms 2,48ms 0,9ms
4 cores 2,76ms 1,4ms 0,5ms
8 cores 1,52ms 0,74ms 0,27ms

Table 1: Time spent for updating AABB for each
benchmark model from 1 core to 8 cores.

Figure 5: The AABB update execution time in relation
to the number of cores. The overall computation time
is reduced by 17.03% by using 8 cores on this bench-
mark.

several benchmark models (cf Figure. 4). We only
performed tests on n-body simulation of rigid bodies
using AABB as bounding volume. To obtain homoge-
neous results, we have only worked on a 8-cores com-
puter using 1, 2, 4 or 8 cores. We worked on Windows
XP Professional x64 Edition Version 2003 with an In-
tel Xeon (2*Quad) CPU X5482 of 3.20 GHz and with
64 GB of RAM.

We present here time results for all used benchmark
models (Cubes, Balls and Skittles). Numerical results
for the first part of the algorithm are presented in Ta-
ble 1. The reduction of the overall running time is
shown on the graphic in Figure 5. We can see a per-
centage of time reduction for the first part of the algo-
rithm concerning the AABB update. For one scenario
four blocks show the time spent from 1 to 8 cores and
we can notice that time decreases when the number
of cores goes up. The overall running time is reduced
by 56.04% by using 2 cores, 31.49% for 4 cores and
17,03% for 8-cores. Numerical results for the second
part of the algorithm are presented in Table 2. This
second part of the algorithm is shown in the graphic
Figure 6 and we notice the same gain of time as in
the first part. The overall running time is reduced
by 59.2% by using 2 cores, 35.34% for 4 cores and

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

Cubes Balls Skittles
1 core 53,339ms 26,7ms 10,71ms
2 cores 31,65ms 15,748ms 6,35ms
4 cores 18,76ms 9,51ms 3,742ms
8 cores 11,43ms 5,82ms 2,314ms

Table 2: Time spent to calculate overlapping pairs for
each benchmark model from 1 core to 8 cores.

Figure 6: The execution time of the overlapping pairs
checks in relation to the number of cores. The over-
all computation time is reduced by 21.56% by using 8
cores on this benchmark.

21.56% for 8-cores.
The general speed-up of our parallel algorithm is

shown in Figure 7, on this graphics our work is rep-
resented by the pink line bounded by the blue one
which is the optimal speed-up for a parallel execution
to which we wanted to get closer to. We have also per-
formed measures on the computation time spent by t
threads shared on c cores and the assumption made at
the beginning on using more than one thread per core
seems to be exact. Time spent by 3 threads on 2 cores
is slower than 2 threads but better than 1. So using
more than one thread per core is not justified and ap-
pears to be less efficient.

4.3 Positioning Key

We have presented a new way to parallelize the
”Sweep and Prune” algorithm on a multi-core archi-
tecture. Results show that our solution enables to re-
duce computation time by almost 5X-6X on a 8-core
architecture. The persistent method that updates an in-
ternal structure is still more interesting compared to
the brute-force one parallelized on 2 or 4 cores but
takes longer compared to the 8-cores parallelization.
As processors will soon have more and more cores,
using the brute-force broad-phase algorithm will be-

Figure 7: The overall gain of the execution. A speed-
up of 5,1 is obtained on a 8-cores computer.

Figure 8: ”Sweep and Prune” algorithm on a single
GPU. Each pair of the biggest table is handled by a
thread that looks for a similar pair in the other input
table.

come a necessity to take full advantage of these highly
parallelizable architecture. GPU is also subjected to
an impressive evolution of its number of cores.

5 Multi-GPU Broad Phase

We continue by presenting a new way to parallelize the
broad-phase algorithm on a multi-GPU architecture.
First, we describe the existing algorithm we used and
then our new model running on a multi-core and multi-
GPU architecture.

5.1 GPU ”Sweep and Prune”

We have started the development with a first imple-
mentation of this broad phase algorithm on a single
GPU. The algorithm is divided into three parts of
which two of them are executed by the GPU. The first
part is in charge of determining which pairs of object

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

Figure 9: Example of spatial subdivision used for
multi-GPU ”Sweep and Prune” algorithm. We seek
the axis with the largest number of overlapping pairs
and subdivide this axis. We then create a CPU thread
by area in charge of one GPU device to perform the
algorithm in its area.

are in overlapping. On the CPU, we maintain three
sorted lists of starts (lower bound) and ends (upper
bound) of objects’ bounding volumes of which we ex-
tract overlapping pairs. The GPU is in charge of ex-
tracting pairs common to all three lists (cf Figure 8).
This work is done by a CUDA algorithm that assigns
to each GPU thread a kernel function in charge of ex-
tracting pairs in a smaller dataset. We first compare
x- and y-axis creating a table of results in the GPU
memory that corresponds to pairs that are in both in-
put axes. To optimize performances we check which
axis is the ”fullest” one before separating data between
threads, in other ways which table is the biggest one.
A thread is created for each pair of this axis, and each
thread is in charge of determining if there is a simi-
lar pair in the other input axis. Then we compare the
z-axis with the previous table of results.

5.2 Spatial Subdivision for Multi-GPU

After adapting the ”Sweep and Prune” algorithm on
a GPU architecture, we now present how it is possible
to adapt it on a multi-GPU architecture. The differ-
ence between these two versions is in the genericity of
the second one because it is able to work on a n-GPU
platform. To separate computations between GPU de-
vices during the broad phase process we use dynamic
spatial subdivision and more precisely we divide the
space by the number of GPUs. The subdivision tech-
nique is not a regular one as are grids or octrees but
depends on the density distribution of objects in the
environment. As the computational complexity of the
algorithm only depends on the number of objects in the
scene, we can decompose the environment from the
density of objects. This repartition enables to balance
GPU’s computation time and obtain an homogeneous

Figure 11: Geometric and numerical properties of our
four benchmark environments.

one between GPUs. Figure 9 presents the technique
we used to subdivide the environment and distribute
computations between GPU devices. We check which
among the axes has more overlapping pairs, then we
divide it by the number of GPUs in order to separate
homogeneously the number of overlapping pairs be-
tween them. Each GPU is now in charge of looking for
overlapping pairs in its own data set. As we mentioned
in the overview each GPU is managed by a CPU core
to provide a global parallelization on multi-GPU and
multi-core. This is done by using OpenMP, which is a
parallelization standard allowing to parallelize the ex-
ecution on several cores by using compiler directives.
Each thread on a core is in charge of a part of the global
environment and of its GPU that executes the broad
phase algorithm.

At the end we synchronise every GPU’s results to
create the list of object pairs to transmit to the narrow
phase.

5.3 Results

We tested our new collision detection pipeline with
different simulation scenarios, going from similar ob-
jects that are completely independent to heterogeneous
scenes of colliding objects (cubes, balls, torus and
alphabet letters) (cf Figure 10 and 11). Tests were
performed on a 4 * Quadro FX 4600 with Intel(R)
Xeon(R) CPU X5482 @ 3.20 Ghz (Octo-core) on
Windows XP(v64) with 64GB of RAM.

Figure 12 presents the computation time during the
broad phase process of our four benchmark tests. We
measured time spent by four algorithms (from sequen-
tial CPU to four GPUs). We can notice a significant
difference between CPU and GPU and also between
using 1, 2 or 4 GPUs. For a large-scale virtual envi-
ronment speed-up is very significant whereas results
show that using 4 GPUs to perform a small-scale en-
vironment brings a loss of time. For example with
the first benchmark (20.000 Cubes) using one GPU re-
duces time by 4,2 in relation to the CPU computation
time. Time spent by the algorithm on CPU is here to

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

Figure 10: Benchmark: Four virtual environments used during simulation tests - (a) Cubes - (b) Torus - (c)
Spheres - (d) Alphabet letters.

Figure 12: The execution time (compared in % to the
CPU time) of the broad phase process in relation to
the run-time architecture.

be compared with GPU measures but it is a non per-
formant time because of the brute force method. Using
this CPU algorithm during the broad phase process if
you only have a sequential CPU is highly not recom-
mended. We use it because this is the most paralleliz-
able broad phase algorithm. The use of 2 GPUs re-
duces time by 1,79 in relation to the use of one single
GPU and 4 GPUs reduces it by more than 3,5.

On the contrary in the last benchmark (Alphabet),
CPU time is the best one because there are only few
objects and the broad phase algorithm is linear with
number of objects and does not take into account ob-
ject complexity. Results show that using one GPU al-
lows to significantly reduce computation time during
the broad phase process in a large-scale evironment.
Results also show that a multi-GPU solution is per-
fectly suited for this kind of highly parallelizable al-
gorithm and allows to divide computation time on 2
and 4 GPUs architecture. Results have also shown that
using the largest number of available GPUs might not
ensure the best performances when using a small-scale

Figure 13: Test made with the ”balls” environment to
compare algorithms behaviors throughout the simula-
tion. Tests were performed from sequential CPU to 4
GPUs during the broad phase process.

environment.
Figure 13 shows performance measurements of the

broad phase process during the ”balls” simulation. We
did the same simulation four times but with four dif-
ferent algorithms from sequential CPU to 4 GPUs. We
can see on this graphic that although the algorithms
have the same computations the computation times
change throughout the simulation, these changes are
related to the simulation evolution. The horizontal line
at the beginning of each curve represents the fall of
balls before dropping on to the floor.

6 Conclusion

We have presented several contributions on the colli-
sion detection optimization centered on hardware per-
formance. We focus on the first step (broad phase)
and propose three new ways of parallelization of the
well-known ”Sweep and Prune” algorithm. We first

urn:nbn:de:0009-6-39893, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

developed a multi-core model that takes into account
the number of available cores. Multi-core architecture
enables us to distribute geometric computations with
use of multi-threading. Critical writing section and
thread idling have been minimized by introducing new
data structures for each thread. Programming with di-
rectives, like OpenMP, appears to be a good compro-
mise for code portability. We then proposed a new
GPU-based algorithm also based on the ”Sweep and
Prune” that has been adapted to multi-GPU architec-
tures. Our technique is based on a spatial subdivision
method used to distribute computations among GPUs.
Results show that significant speed-up can be obtained
by passing from 1 to 4 GPUs in a large-scale environ-
ment.

Results suggest a multitude of future directions. It
could be interesting to focus on repartition techniques
that can be used to distribute data and tasks between
GPUs to determine which one is the most suitable for
a multi-GPU platform. Specifically, there is still room
for improvement in the field of data division during
the exact collision detection step (narrow phase). The
”Sweep and Prune” algorithm can also be parallelized
in many ways by proceeding to a different division of
the axes. We saw that using 4 GPUs in a small-scale
environment brings a loss of time. Another way of op-
timization could be an evaluation of the most suitable
number of GPU to use to obtain best performances, as
using all available GPUs during physical simulations
might not ensure best performance. Multi-GPU tech-
nique is going to be a key component of parallel colli-
sion detection algorithms. The design of such systems
requires a detailed analysis of task and data repartition
techniques to optimize the performance of these com-
plex runtime architectures.

7 Acknowledgements

This work would not have been possible without the
help of several people who provided great help and
our beautiful region of Brittany who provided fund-
ing (ARED financing - GriRV Project No4295). This
paper is related to a Best Student Paper Award re-
ceived on April 2010 at the VRIC conference, the
authors thank the conference’s organisers and people
who voted for our work.

References

[AGA09] Quentin Avril, Valérie Gouranton, and
Bruno Arnaldi, New Trends in Collision
Detection Performance, Virtual Reality
International Conference (VRIC) 2009
(Simon Richir and Akihiko Shirai, eds.),
2009, pp. 53–62.

[AGA10a] Quentin Avril, Valérie Gouranton, and
Bruno Arnaldi, A Broad Phase Collision
Detection Algorithm Adapted to Multi-
cores Architectures, Virtual Reality In-
ternational Conference (VRIC) 2010 (Si-
mon Richir and Akihiko Shirai, eds.),
2010, pp. 95–100.

[AGA10b] Quentin Avril, Valérie Gouranton, and
Bruno Arnaldi, Synchronization-Free
Parallel Collision Detection Pipeline,
International Conference on Artifi-
cial Telexistence (ICAT) 2010, 2010,
pp. 22–28.

[AGA12] Quentin Avril, Valérie Gouranton, and
Bruno Arnaldi, Fast Collision Culling in
Large-Scale Environments Using GPU
Mapping Function, Eurographics Sympo-
sium on Parallel Graphics and Visualiza-
tion (2012) (Cagliari, Italy) (Hank Childs,
Torsten Kuhlen, and Fabio Marton, eds.),
Eurographics Association, 2012, DOI
10.2312/EGPGV/EGPGV12/071-080,
pp. 71–80, ISBN 978-3-905674-35-4.

[Bar92] David Baraff, Dynamic Simulation of
Non-Penetrating Rigid Bodies, Ph.D. the-
sis, Cornell University, 1992.

[Ber97] Gino Van Den Bergen, Efficient
collision detection of complex de-
formable models using AABB trees,
Journal of Graphics Tools 2 (1997),

Citation
Quentin Avril, Valérie Gouranton, Bruno Arnaldi,
Collision Detection: Broad Phase Adaptation from
Multi-Core to Multi-GPU Architecture, Journal of
Virtual Reality and Broadcasting, 11(2014),no. 6,
September 2014, urn:nbn:de:0009-6-39893,
ISSN 1860-2037.

urn:nbn:de:0009-6-39893, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Avril&aufirst=Quentin&atitle=New+Trends+in+Collision+Detection+Performance&title=Virtual+Reality+International+Conference+VRIC+2009&date=2009
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Avril&aufirst=Quentin&atitle=New+Trends+in+Collision+Detection+Performance&title=Virtual+Reality+International+Conference+VRIC+2009&date=2009
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Avril&aufirst=Quentin&atitle=A+Broad+Phase+Collision+Detection+Algorithm+Adapted+to+Multi-cores+Architectures&title=Virtual+Reality+International+Conference+(VRIC)+2010&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Avril&aufirst=Quentin&atitle=A+Broad+Phase+Collision+Detection+Algorithm+Adapted+to+Multi-cores+Architectures&title=Virtual+Reality+International+Conference+(VRIC)+2010&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Avril&aufirst=Quentin&atitle=A+Broad+Phase+Collision+Detection+Algorithm+Adapted+to+Multi-cores+Architectures&title=Virtual+Reality+International+Conference+(VRIC)+2010&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Avril&aufirst=Quentin&atitle=Synchronization-Free+Parallel+Collision+Detection+Pipeline&title=International+Conference+on+Artificial+Telexistence+(ICAT)+2010&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Avril&aufirst=Quentin&atitle=Synchronization-Free+Parallel+Collision+Detection+Pipeline&title=International+Conference+on+Artificial+Telexistence+(ICAT)+2010&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Avril&aufirst=Quentin&title=Eurographics+Symposium+on+Parallel+Graphics+and+Visualization+2012&isbn=978-3-905674-35-4&date=2012
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Avril&aufirst=Quentin&title=Eurographics+Symposium+on+Parallel+Graphics+and+Visualization+2012&isbn=978-3-905674-35-4&date=2012
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Avril&aufirst=Quentin&title=Eurographics+Symposium+on+Parallel+Graphics+and+Visualization+2012&isbn=978-3-905674-35-4&date=2012
http://dx.doi.org/10.2312/EGPGV/EGPGV12/071-080
http://dx.doi.org/10.2312/EGPGV/EGPGV12/071-080
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baraff&aufirst=David&title=&atitle=Dynamic+Simulation+of+Non-Penetrating+Rigid+Bodies&date=1992
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baraff&aufirst=David&title=&atitle=Dynamic+Simulation+of+Non-Penetrating+Rigid+Bodies&date=1992
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bergen&aufirst=Gino&title=&atitle=Efficient+collision+detection+of+complex+deformable+models+using+AABB+trees&issn=1086-7651&date=1997&volume=2&number=4
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bergen&aufirst=Gino&title=&atitle=Efficient+collision+detection+of+complex+deformable+models+using+AABB+trees&issn=1086-7651&date=1997&volume=2&number=4
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bergen&aufirst=Gino&title=&atitle=Efficient+collision+detection+of+complex+deformable+models+using+AABB+trees&issn=1086-7651&date=1997&volume=2&number=4


Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

no. 4, 1–13, ISSN 1086-7651, DOI
10.1080/10867651.1997.10487480.

[BF79] Jon Louis Bentley and Jerome H. Fried-
man, Data Structures for Range Search-
ing, ACM Computing Surveys (CSUR)
11 (1979), no. 4, 397–409, ISSN 0360-
0300, DOI 10.1145/356789.356797.

[BT95] Srikanth Bandi and Daniel Thal-
mann, An Adaptive Spatial Subdivision
of the Object Space for Fast Col-
lision Detection of Animated Rigid
Bodies, Computer Graphics Forum
14 (1995), no. 3, 259–270, ISSN

1467-8659, DOI 10.1111/j.1467-
8659.1995.cgf143 0259.x.

[BW04] George Baciu and Wingo Sai-Keung
Wong, Image-Based Collision Detec-
tion for Deformable Cloth Models,
IEEE Transactions on Visualization
and Computer Graphics 10 (2004),
no. 6, 649–663, ISSN 1077-2626, DOI
10.1109/TVCG.2004.44.

[CLMP95] Jonathan D. Cohen, Ming C. Lin, Di-
nesh Manocha, and Madhav K. Pon-
amgi, I-COLLIDE: An Interactive and
Exact Collision Detection System for
Large-Scale Environments, I3D ’95 Pro-
ceedings of the 1995 symposium on
Interactive 3D graphics, 1995, DOI
10.1145/199404.199437, pp. 189–196,
218, ISBN 0-89791-736-7.

[DLAG13] Steve Dodier-Lazaro, Quentin Avril,
and Valérie Gouranton, SODA: A
Scalability-Oriented Distributed &
Anticipative Model for Collision Detec-
tion in Physically-based Simulations,
GRAPP, International Conference on
Computer Graphics Theory and Ap-
plications (2013) (Sabine Coquillart,
Carlos Andújar, Robert S. Laramee,
Andreas Kerren, and José Braz, eds.),
SciTePress, 2013, pp. 337–346, ISBN

978-989-8565-46-4.

[Eri05] Christer Ericson, Real-time Collision De-
tection, Morgan Kaufmann, San Fran-
cisco, Calif, 2005, ISBN 978-1-55860-
732-3.

[FBAF08] François Faure, Sébastien Barbier,
Jérémie Allard, and Florent Falipou,
Image-based Collision Detection and
Response between Arbitrary Volumetric
Objects, 2008.

[GJK88] Elmer G. Gilbert, Daniel W. Johnson,
and Sathiya S. Keerthi, A Fast Proce-
dure for Computing the Distance Between
Complex Objects in Three-Dimensional
Space, IEEE Journal of Robotics and Au-
tomation 4 (1988), no. 2, 193–203, ISSN

0882-4967, DOI 10.1109/56.2083.

[GLM96] Stefan Gottschalk, Ming Lin, and Di-
nesh Manocha, OBBTree: A Hierar-
chical Structure for Rapid Interference
Detection, SIGGRAPH ’96 Proceed-
ings of the 23rd annual conference on
Computer graphics and interactive tech-
niques (New York), ACM, 1996, DOI
10.1145/237170.237244, pp. 171–180,
ISBN 0-201-94800-1.

[GLM05a] Naga K. Govindaraju, Ming C. Lin, and
Dinesh Manocha, Quick-CULLIDE: fast
inter- and intra-object collision culling
using graphics hardware, SIGGRAPH
’05: ACM SIGGRAPH 2005 Courses
(New York, NY, USA), ACM, 2005, Arti-
cle no. 218, p. 218.

[GLM05b] Naga K. Govindaraju, Ming C. Lin,
and Dinesh Manocha, Fast and Reli-
able Collision Detection Using Graph-
ics Processors, SCG ’05 Proceedings
of the twenty-first annual symposium
on Computational geometry, 2005, DOI
0.1145/1064092.1064158, pp. 384–385,
ISBN 1-58113-991-8.

[GRLM03] Naga K. Govindaraju, Stephane Redon,
Ming C. Lin, and Dinesh Manocha,
CULLIDE: Interactive Collision Detec-
tion Between Complex Models in Large
Environments using Graphics Hardware,
HWWS ’03 Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware (San Diego,
California) (M. Doggett, W. Heidrich,
W. Mark, and A. Schilling, eds.), Euro-
graphics Association, 2003, pp. 25–32,
ISBN 1-58113-739-7.

urn:nbn:de:0009-6-39893, ISSN 1860-2037

http://dx.doi.org/10.1080/10867651.1997.10487480
http://dx.doi.org/10.1080/10867651.1997.10487480
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bentley&aufirst=Jon&title=&atitle=Data+Structures+for+Range+Searching&issn=0360-0300&date=1979&volume=1&number=4
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bentley&aufirst=Jon&title=&atitle=Data+Structures+for+Range+Searching&issn=0360-0300&date=1979&volume=1&number=4
http://dx.doi.org/10.1145/356789.356797
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bandi&aufirst=Srikanth&title=&atitle=An+Adaptive+Spatial+Subdivision+of+the+Object+Space+for+Fast+Collision+Detection+of+Animated+Rigid+Bodies&issn=1467-8659&date=1995&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bandi&aufirst=Srikanth&title=&atitle=An+Adaptive+Spatial+Subdivision+of+the+Object+Space+for+Fast+Collision+Detection+of+Animated+Rigid+Bodies&issn=1467-8659&date=1995&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bandi&aufirst=Srikanth&title=&atitle=An+Adaptive+Spatial+Subdivision+of+the+Object+Space+for+Fast+Collision+Detection+of+Animated+Rigid+Bodies&issn=1467-8659&date=1995&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bandi&aufirst=Srikanth&title=&atitle=An+Adaptive+Spatial+Subdivision+of+the+Object+Space+for+Fast+Collision+Detection+of+Animated+Rigid+Bodies&issn=1467-8659&date=1995&volume=1&number=3
http://dx.doi.org/DOI%2010.1111/j.1467-8659.1995.cgf143_0259.x
http://dx.doi.org/DOI%2010.1111/j.1467-8659.1995.cgf143_0259.x
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baciu&aufirst=George&title=&atitle=Image-Based+Collision+Detection+for+Deformable+Cloth+Models&issn=1077-2626&date=2004&volume=1&number=6
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baciu&aufirst=George&title=&atitle=Image-Based+Collision+Detection+for+Deformable+Cloth+Models&issn=1077-2626&date=2004&volume=1&number=6
http://dx.doi.org/10.1109/TVCG.2004.44
http://dx.doi.org/10.1109/TVCG.2004.44
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Cohen&aufirst=Jonathan&title=I3D+95+Proceedings+of+the+1995+symposium+on+Interactive+3D+graphics&isbn=0-89791-736-7&date=1995
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Cohen&aufirst=Jonathan&title=I3D+95+Proceedings+of+the+1995+symposium+on+Interactive+3D+graphics&isbn=0-89791-736-7&date=1995
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Cohen&aufirst=Jonathan&title=I3D+95+Proceedings+of+the+1995+symposium+on+Interactive+3D+graphics&isbn=0-89791-736-7&date=1995
http://dx.doi.org/10.1145/199404.199437
http://dx.doi.org/10.1145/199404.199437
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Dodier-Lazaro&aufirst=Steve&title=GRAPP+International+Conference+on+Computer+Graphics+Theory+and+Applications+2013&isbn=978-989-8565-46-4&date=2013
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Dodier-Lazaro&aufirst=Steve&title=GRAPP+International+Conference+on+Computer+Graphics+Theory+and+Applications+2013&isbn=978-989-8565-46-4&date=2013
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Dodier-Lazaro&aufirst=Steve&title=GRAPP+International+Conference+on+Computer+Graphics+Theory+and+Applications+2013&isbn=978-989-8565-46-4&date=2013
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Dodier-Lazaro&aufirst=Steve&title=GRAPP+International+Conference+on+Computer+Graphics+Theory+and+Applications+2013&isbn=978-989-8565-46-4&date=2013
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Ericson&aufirst=Christer&title=&isbn=978-1-55860-732-3&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Ericson&aufirst=Christer&title=&isbn=978-1-55860-732-3&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Faure&aufirst=Francois&title=&atitle=Image-based+Collision+Detection+and+Response+between+Arbitrary+Volumetric+Objects&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Faure&aufirst=Francois&title=&atitle=Image-based+Collision+Detection+and+Response+between+Arbitrary+Volumetric+Objects&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Faure&aufirst=Francois&title=&atitle=Image-based+Collision+Detection+and+Response+between+Arbitrary+Volumetric+Objects&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Gilbert&aufirst=Elmer&title=&atitle=A+Fast+Procedure+for+Computing+the+Distance+Between+Complex+Objects+in+Three-Dimensional+Space&issn=0882-4967&date=1988&volume=4&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Gilbert&aufirst=Elmer&title=&atitle=A+Fast+Procedure+for+Computing+the+Distance+Between+Complex+Objects+in+Three-Dimensional+Space&issn=0882-4967&date=1988&volume=4&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Gilbert&aufirst=Elmer&title=&atitle=A+Fast+Procedure+for+Computing+the+Distance+Between+Complex+Objects+in+Three-Dimensional+Space&issn=0882-4967&date=1988&volume=4&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Gilbert&aufirst=Elmer&title=&atitle=A+Fast+Procedure+for+Computing+the+Distance+Between+Complex+Objects+in+Three-Dimensional+Space&issn=0882-4967&date=1988&volume=4&number=2
http://dx.doi.org/10.1109/56.2083
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Gottschalk&aufirst=Stefan&title=SIGGRAPH+96+Proceedings+of+the+23rd+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-201-94800-1&date=1996
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Gottschalk&aufirst=Stefan&title=SIGGRAPH+96+Proceedings+of+the+23rd+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-201-94800-1&date=1996
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Gottschalk&aufirst=Stefan&title=SIGGRAPH+96+Proceedings+of+the+23rd+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-201-94800-1&date=1996
http://dx.doi.org/10.1145/237170.237244
http://dx.doi.org/10.1145/237170.237244
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Govindaraju&aufirst=Naga&atitle=Quick-CULLIDE+fast+inter-+and+intra-object+collision+culling+using+graphics+hardware&title=SIGGRAPH+05+ACM+SIGGRAPH+2005+Courses&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Govindaraju&aufirst=Naga&atitle=Quick-CULLIDE+fast+inter-+and+intra-object+collision+culling+using+graphics+hardware&title=SIGGRAPH+05+ACM+SIGGRAPH+2005+Courses&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Govindaraju&aufirst=Naga&atitle=Quick-CULLIDE+fast+inter-+and+intra-object+collision+culling+using+graphics+hardware&title=SIGGRAPH+05+ACM+SIGGRAPH+2005+Courses&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Govindaraju&aufirst=Naga&title=SCG+05+Proceedings+of+the+twenty-first+annual+symposium+on+Computational+geometry&isbn=1-58113-991-8&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Govindaraju&aufirst=Naga&title=SCG+05+Proceedings+of+the+twenty-first+annual+symposium+on+Computational+geometry&isbn=1-58113-991-8&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Govindaraju&aufirst=Naga&title=SCG+05+Proceedings+of+the+twenty-first+annual+symposium+on+Computational+geometry&isbn=1-58113-991-8&date=2005
http://dx.doi.org/0.1145/1064092.1064158
http://dx.doi.org/0.1145/1064092.1064158
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Govindaraju&aufirst=Naga&title=HWWS+03+Proceedings+of+the+ACM+SIGGRAPH+EUROGRAPHICS+conference+on+Graphics+hardware&isbn=1-58113-739-7&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Govindaraju&aufirst=Naga&title=HWWS+03+Proceedings+of+the+ACM+SIGGRAPH+EUROGRAPHICS+conference+on+Graphics+hardware&isbn=1-58113-739-7&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Govindaraju&aufirst=Naga&title=HWWS+03+Proceedings+of+the+ACM+SIGGRAPH+EUROGRAPHICS+conference+on+Graphics+hardware&isbn=1-58113-739-7&date=2003


Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

[HFR08] Everton Hermann, François Faure, and
Bruno Raffin, Ray-Traced Collision De-
tection for Deformable Bodies, GRAPP
2008 - 3rd International Conference on
Computer Graphics Theory and Applica-
tions (2008), 2008, pp. 293–299.

[HRF09] Everton Hermann, Bruno Raffin, and
François Faure, Interactive Physical
Simulation on Multicore Architectures,
Eurographics Workshop on Paral-
lel and Graphics and Visualization,
EGPGV’09, March, 2009, 2009, DOI
10.2312/EGPGV/EGPGV09/001-008,
ISBN 978-3-905674-15-6.

[HTG03] Bruno Heidelberger, Matthias Teschner,
and Markus H. Gross, Real-Time Vol-
umetric Intersections of Deforming
Objects, Proceedings of Vision, Mod-
eling, and Visualization 2003 (Berlin)
(Thomas Ertl, ed.), Akademische Ver-
lagsgesellschaft Aka GmbH, 2003,
pp. 461–468, ISBN 3-89838-048-3.

[HTG04] Bruno Heidelberger, Matthias Teschner,
and Markus H. Gross, Detection of Col-
lisions and Self-collisions Using Image-
space Techniques, Journal of WSCG 12
(2004), no. 1–3, 145–152, ISSN 1213-
6972.

[Hub95] Philip M. Hubbard, Collision Detection
for Interactive Graphics Applications,
IEEE Transactions on Visualization and
Computer Graphics 1 (1995), no. 3, 218–
230, ISSN 1077-2626.

[JCD05] Jose M. Juarez-Comboni and Andy M.
Day, A Multi-Pass Multi-Stage Multi-
GPU Collision Detection Algorithm,
Graphicon 2005 Proceedings, 2005.

[JTT01] Pablo Jiménez, Federico Thomas, and
Carme Torras, 3D collision detection: a
survey, Computers & Graphics 25 (2001),
no. 2, 269–285, ISSN 0097-8493, DOI
10.1016/S0097-8493(00)00130-8.

[KHH+09] Duksu Kim, Jae-Pil Heo, Jaehyuk Huh,
John Kim, and Sung-Eui Yoon, HPCCD:
Hybrid Parallel Continuous Collision
Detection using CPUs and GPUs,

Computer Graphics Forum 28 (2009),
no. 7, 1791–1800, ISSN 1467-8659, DOI
10.1111/j.1467-8659.2009.01556.x.

[KHI+07] S. Kockara, T. Halic, K. Iqbal, C. Bayrak,
and Richard Rowe, Collision Detection:
A Survey, IEEE International Confer-
ence on (2007) Man an Cybernetics,
2007. ISIC., 2007, DOI 10.1109/IC-
SMC.2007.4414258, pp. 4046–4051,
ISBN 978-1-4244-0990-7.

[KHY08] DukSu Kim, Jea-Pil Heo, and Sung-Eui
Yoon, PCCD: Parallel Continuous Colli-
sion Detection, SIGGRAPH ’09: Posters,
2008, Article No. 50.

[KP03] Dave Knott and Dinesh K. Pai, CIn-
DeR: Collision and Interference Detec-
tion in Real-time using graphics hard-
ware, Graphics Interface, 2003, pp. 73–
80.

[KSTK95] Yoshifumi Kitamura, Andrew Smith,
H. Takemura, and F. Kishino, Parallel
Algorithms for Real-time Colliding Face
Detection, Robot and Human Communi-
cation (1995), 211–218, DOI 0.1109/RO-
MAN.1995.531962.

[LAM01] Thomas Larsson and Tomas Akenine-
Möller, Collision Detection for Contin-
uously Deforming Bodies, Eurographics
(2001), 325–333.

[LC91] Ming C. Lin and John F. Canny, A
Fast Algorithm for Incremental Dis-
tance Calculation, Proceedings of the
1991 IEEE International Conference on
Robotics and Automation, vol. 2, 1991,
DOI 10.1109/ROBOT.1991.131723,
pp. 1008–1014, ISBN 0-8186-2163-X.

[LG98] Ming C. Lin and Stefan Gottschalk, Col-
lision detection between geometric mod-
els: a survey, The proceedings of a Con-
ference on the Mathematics of Surfaces,
organized by the Institute of Mathemat-
ics and its Applications (Winchester, UK)
(Robert Cripps, ed.), vol. VIII, Informa-
tion Geometers, 1998, pp. 37–56, ISBN

1-874728-15-1.

urn:nbn:de:0009-6-39893, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Hermann&aufirst=Everton&atitle=Ray-Traced+Collision+Detection+for+Deformable+Bodies&title=GRAPP+2008+-+3rd+International+Conference+on+Computer+Graphics+Theory+and+Applications+2008&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Hermann&aufirst=Everton&atitle=Ray-Traced+Collision+Detection+for+Deformable+Bodies&title=GRAPP+2008+-+3rd+International+Conference+on+Computer+Graphics+Theory+and+Applications+2008&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Hermann&aufirst=Everton&title=Eurographics+Workshop+on+Parallel+and+Graphics+and+Visualization+EGPGV+09+March+2009&isbn=978-3-905674-15-6&date=2009
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Hermann&aufirst=Everton&title=Eurographics+Workshop+on+Parallel+and+Graphics+and+Visualization+EGPGV+09+March+2009&isbn=978-3-905674-15-6&date=2009
http://dx.doi.org/10.2312/EGPGV/EGPGV09/001-008
http://dx.doi.org/10.2312/EGPGV/EGPGV09/001-008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Heidelberger&aufirst=Bruno&title=Proceedings+of+Vision+Modeling+and+Visualization+2003&isbn=3-89838-048-3&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Heidelberger&aufirst=Bruno&title=Proceedings+of+Vision+Modeling+and+Visualization+2003&isbn=3-89838-048-3&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Heidelberger&aufirst=Bruno&title=Proceedings+of+Vision+Modeling+and+Visualization+2003&isbn=3-89838-048-3&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Heidelberger&aufirst=Bruno&title=Journal+of+WSCG&atitle=Detection+of+Collisions+and+Self-collisions+Using+Image-space+Techniques&issn=1213-6972&date=2004&volume=1&number=1-3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Heidelberger&aufirst=Bruno&title=Journal+of+WSCG&atitle=Detection+of+Collisions+and+Self-collisions+Using+Image-space+Techniques&issn=1213-6972&date=2004&volume=1&number=1-3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Heidelberger&aufirst=Bruno&title=Journal+of+WSCG&atitle=Detection+of+Collisions+and+Self-collisions+Using+Image-space+Techniques&issn=1213-6972&date=2004&volume=1&number=1-3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Hubbard&aufirst=Philip&title=&atitle=Collision+Detection+for+Interactive+Graphics+Applications&issn=1077-2626&date=1995&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Hubbard&aufirst=Philip&title=&atitle=Collision+Detection+for+Interactive+Graphics+Applications&issn=1077-2626&date=1995&volume=1&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Juarez-Comboni&aufirst=Jose&atitle=A+Multi-Pass+Multi-Stage+Multi-GPU+Collision+Detection+Algorithm&title=Graphicon+2005+Proceedings&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Juarez-Comboni&aufirst=Jose&atitle=A+Multi-Pass+Multi-Stage+Multi-GPU+Collision+Detection+Algorithm&title=Graphicon+2005+Proceedings&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Jim%27enez&aufirst=Pablo&title=&atitle=3D+collision+detection+a+survey&issn=0097-8493&date=2001&volume=2&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Jim%27enez&aufirst=Pablo&title=&atitle=3D+collision+detection+a+survey&issn=0097-8493&date=2001&volume=2&number=2
http://dx.doi.org/10.1016/S0097-8493(00)00130-8
http://dx.doi.org/10.1016/S0097-8493(00)00130-8
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kim&aufirst=Duksu&title=&atitle=HPCCD:+Hybrid+Parallel+Continuous+Collision+Detection+using+CPUs+and+GPUs&issn=1467-8659&date=2009&volume=2&number=7
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kim&aufirst=Duksu&title=&atitle=HPCCD:+Hybrid+Parallel+Continuous+Collision+Detection+using+CPUs+and+GPUs&issn=1467-8659&date=2009&volume=2&number=7
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kim&aufirst=Duksu&title=&atitle=HPCCD:+Hybrid+Parallel+Continuous+Collision+Detection+using+CPUs+and+GPUs&issn=1467-8659&date=2009&volume=2&number=7
http://dx.doi.org/10.1111/j.1467-8659.2009.01556.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01556.x
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Kockara&auinit=S.&title=&isbn=978-1-4244-0990-7&date=2007
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Kockara&auinit=S.&title=&isbn=978-1-4244-0990-7&date=2007
http://dx.doi.org/10.1109/ICSMC.2007.4414258
http://dx.doi.org/10.1109/ICSMC.2007.4414258
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Kim&aufirst=DukSu&atitle=PCCD+Parallel+Continuous+Collision+Detection&title=SIGGRAPH+09+Posters&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Kim&aufirst=DukSu&atitle=PCCD+Parallel+Continuous+Collision+Detection&title=SIGGRAPH+09+Posters&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Knott&aufirst=Dave&atitle=CInDeR+Collision+and+Interference+Detection+in+Real-time+using+graphics+hardware&title=Graphics+Interface&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Knott&aufirst=Dave&atitle=CInDeR+Collision+and+Interference+Detection+in+Real-time+using+graphics+hardware&title=Graphics+Interface&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Knott&aufirst=Dave&atitle=CInDeR+Collision+and+Interference+Detection+in+Real-time+using+graphics+hardware&title=Graphics+Interface&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Knott&aufirst=Dave&atitle=CInDeR+Collision+and+Interference+Detection+in+Real-time+using+graphics+hardware&title=Graphics+Interface&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kitamura&aufirst=Yoshifumi&title=&atitle=Parallel+Algorithms+for+Real-time+Colliding+Face+Detection&isbn=0-7803-2904-X&date=1995
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kitamura&aufirst=Yoshifumi&title=&atitle=Parallel+Algorithms+for+Real-time+Colliding+Face+Detection&isbn=0-7803-2904-X&date=1995
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kitamura&aufirst=Yoshifumi&title=&atitle=Parallel+Algorithms+for+Real-time+Colliding+Face+Detection&isbn=0-7803-2904-X&date=1995
http://dx.doi.org/0.1109/ROMAN.1995.531962
http://dx.doi.org/0.1109/ROMAN.1995.531962
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Larsson&aufirst=Thomas&title=&atitle=Collision+Detection+for+Continuously+Deforming+Bodies&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Larsson&aufirst=Thomas&title=&atitle=Collision+Detection+for+Continuously+Deforming+Bodies&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lin&aufirst=Ming&title=&isbn=0-8186-2163-X&date=1991
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lin&aufirst=Ming&title=&isbn=0-8186-2163-X&date=1991
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lin&aufirst=Ming&title=&isbn=0-8186-2163-X&date=1991
http://dx.doi.org/10.1109/ROBOT.1991.131723
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lin&aufirst=Ming&title=The+proceedings+of+a+Conference+on+the+Mathematics+of+Surfaces+organized+by+the+Institute+of+Mathematics+and+its+Applications&isbn=1-874728-15-1&date=1998
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lin&aufirst=Ming&title=The+proceedings+of+a+Conference+on+the+Mathematics+of+Surfaces+organized+by+the+Institute+of+Mathematics+and+its+Applications&isbn=1-874728-15-1&date=1998
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lin&aufirst=Ming&title=The+proceedings+of+a+Conference+on+the+Mathematics+of+Surfaces+organized+by+the+Institute+of+Mathematics+and+its+Applications&isbn=1-874728-15-1&date=1998


Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 6

[LMM10] C. Lauterbach, Q. Mo, and D. Manocha,
gProximity: Hierarchical GPU-based
Operations for Collision and Distance
Queries, Computer Graphics Forum
(EUROGRAPHICS Proceedings),
vol. 29, 2010, DOI 10.1111/j.1467-
8659.2009.01611.x, pp. 419–428.

[OLG+05] John D. Owens, David Luebke, Naga
Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, and Timothy J. Purcell,
A Survey of General-Purpose Computa-
tion on Graphics Hardware, Eurograph-
ics 2005 STAR State of the Art Report,
2005, pp. 21–51.

[PKS10] Simon Pabst, Artur Koch, and Wolf-
gang Straßer, Fast and Scalable
CPU/GPU Collision Detection for
Rigid and Deformable Surfaces, Com-
puter Graphics Forum, vol. 29, 2010,
DOI 10.1111/j.1467-8659.2010.01769.x,
pp. 1605–16212.

[SCS+08] Larry Seiler, Doug Carmean, Eric Spran-
gle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam
Lake, Jeremy Sugerman, Robert Cavin,
Roger Espasa, Ed Grochowski, Toni Juan,
and Pat Hanrahan, Larrabee: a many-
core x86 architecture for visual comput-
ing, ACM SIGGRAPH’08 Transactions
on Graphics 27 (2008), no. 3, ISSN 0730-
0301, Article no. 18.

[SGHS98] Jonathan Shade, Steven J. Gortler, Li-Wei
He, and Richard Szeliski, Layered Depth
Images, SIGGRAPH ’98 Proceedings of
the 25th annual conference on Computer
graphics and interactive techniques, 1998,
DOI 10.1145/280814.280882, pp. 231–
242, ISBN 0-89791-999-8.

[SSIF09] Andrew Selle, Jonathan Su, Geoffrey
Irving, and Ronald Fedkiw, Robust
High-Resolution Cloth Using Paral-
lelism, History-Based Collisions, and
Accurate Friction, IEEE Transactions on
Visualization and Computer Graphics 15
(2009), no. 2, 339–350, ISSN 1077-2626,
DOI 10.1109/TVCG.2008.79.

[TKH+05] Matthias Teschner, Stefan Kimmerle,
Bruno Heidelberger, Gabriel Zachmann,
Laks Raghupathi, Arnulph Fuhrmann,
Marie-Paule Cani, François Faure, Nadia
Magnenat-Thalmann, Wolfgang Straßer,
and Pascal Volino, Collision Detec-
tion for Deformable Objects, Comput.
Graph. Forum 24 (2005), no. 1, 61–81,
ISSN 1467-8659, DOI 10.1111/j.1467-
8659.2005.00829.x.

[TMT08] Min Tang, Dinesh Manocha, and Ruofeng
Tong, Multi-Core Collision Detection
between Deformable Models, SPM ’09
2009 SIAM/ACM Joint Conference
on Geometric and Physical Modeling,
2008, DOI 10.1145/1629255.1629303,
pp. 355–360, ISBN 978-1-60558-711-0.

[TPB08] Bernhard Thomaszewski, Simon Pabst,
and Wolfgang Blochinger, Parallel tech-
niques for physically based simula-
tion on multi-core processor architec-
tures, Computers & Graphics 32 (2008),
no. 1, 25–40, ISSN 0097-8493, DOI
0.1016/j.cag.2007.11.003.

[Zac01] Gabriel Zachmann, Optimizing the Colli-
sion Detection Pipeline, Game Technol-
ogy Conference (GTEC) 2001. Proceed-
ings HongKong, 2001 (G. Baciu, ed.),
2001.

urn:nbn:de:0009-6-39893, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lauterbach&auinit=C.&title=Computer+Graphics+Forum&issn=1467-8659&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lauterbach&auinit=C.&title=Computer+Graphics+Forum&issn=1467-8659&date=2010
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lauterbach&auinit=C.&title=Computer+Graphics+Forum&issn=1467-8659&date=2010
http://dx.doi.org/10.1111/j.1467-8659.2009.01611.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01611.x
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Owens&aufirst=John&atitle=A+Survey+of+General-Purpose+Computation+on+Graphics+Hardware&title=Eurographics+2005+STAR+State+of+the+Art+Report&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Owens&aufirst=John&atitle=A+Survey+of+General-Purpose+Computation+on+Graphics+Hardware&title=Eurographics+2005+STAR+State+of+the+Art+Report&date=2005
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Owens&aufirst=John&title=Computer+Graphics+Forum&atitle=A+Survey+of+General-Purpose+Computation+on+Graphics+Hardware&issn=1467-8659&date=2007&volume=2&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Owens&aufirst=John&title=Computer+Graphics+Forum&atitle=A+Survey+of+General-Purpose+Computation+on+Graphics+Hardware&issn=1467-8659&date=2007&volume=2&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Owens&aufirst=John&title=Computer+Graphics+Forum&atitle=A+Survey+of+General-Purpose+Computation+on+Graphics+Hardware&issn=1467-8659&date=2007&volume=2&number=1
http://dx.doi.org/10.1111/j.1467-8659.2010.01769.x
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Seiler&aufirst=Larry&title=&atitle=Larrabee+a+many-core+x86+architecture+for+visual+computing&issn=0730-0301&date=2008&volume=2&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Seiler&aufirst=Larry&title=&atitle=Larrabee+a+many-core+x86+architecture+for+visual+computing&issn=0730-0301&date=2008&volume=2&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Seiler&aufirst=Larry&title=&atitle=Larrabee+a+many-core+x86+architecture+for+visual+computing&issn=0730-0301&date=2008&volume=2&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Shade&aufirst=Jonathan&title=SIGGRAPH+98+Proceedings+of+the+25th+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-89791-999-8&date=1998
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Shade&aufirst=Jonathan&title=SIGGRAPH+98+Proceedings+of+the+25th+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-89791-999-8&date=1998
http://dx.doi.org/10.1145/280814.280882
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Selle&aufirst=Andrew&title=&atitle=Robust+High-Resolution+Cloth+Using+Parallelism+History-Based+Collisions+and+Accurate+Friction&issn=1077-2626&date=2009&volume=1&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Selle&aufirst=Andrew&title=&atitle=Robust+High-Resolution+Cloth+Using+Parallelism+History-Based+Collisions+and+Accurate+Friction&issn=1077-2626&date=2009&volume=1&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Selle&aufirst=Andrew&title=&atitle=Robust+High-Resolution+Cloth+Using+Parallelism+History-Based+Collisions+and+Accurate+Friction&issn=1077-2626&date=2009&volume=1&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Selle&aufirst=Andrew&title=&atitle=Robust+High-Resolution+Cloth+Using+Parallelism+History-Based+Collisions+and+Accurate+Friction&issn=1077-2626&date=2009&volume=1&number=2
http://dx.doi.org/10.1109/TVCG.2008.79
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Teschner&aufirst=Matthias&title=&atitle=Collision+Detection+for+Deformable+Objects&issn=1467-8659&date=2005&volume=24&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Teschner&aufirst=Matthias&title=&atitle=Collision+Detection+for+Deformable+Objects&issn=1467-8659&date=2005&volume=24&number=1
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Tang&aufirst=Min&title=SPM+09+2009+SIAM+ACM+Joint+Conference+on+Geometric+and+Physical+Modeling&isbn=978-1-60558-711-0&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Tang&aufirst=Min&title=SPM+09+2009+SIAM+ACM+Joint+Conference+on+Geometric+and+Physical+Modeling&isbn=978-1-60558-711-0&date=2008
http://dx.doi.org/10.1145/1629255.1629303
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Thomaszewski&aufirst=Bernhard&title=&atitle=Parallel+techniques+for+physically+based+simulation+on+multi-core+processor+architectures&issn=0097-8493&date=2008&volume=32&number=1&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Thomaszewski&aufirst=Bernhard&title=&atitle=Parallel+techniques+for+physically+based+simulation+on+multi-core+processor+architectures&issn=0097-8493&date=2008&volume=32&number=1&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Thomaszewski&aufirst=Bernhard&title=&atitle=Parallel+techniques+for+physically+based+simulation+on+multi-core+processor+architectures&issn=0097-8493&date=2008&volume=32&number=1&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Thomaszewski&aufirst=Bernhard&title=&atitle=Parallel+techniques+for+physically+based+simulation+on+multi-core+processor+architectures&issn=0097-8493&date=2008&volume=32&number=1&date=2008
http://dx.doi.org/0.1016/j.cag.2007.11.003
http://dx.doi.org/0.1016/j.cag.2007.11.003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Zachmann&aufirst=Gabriel&atitle=Optimizing+the+Collision+Detection+Pipeline&title=Game+Technology+Conference+GTEC+2001.+Proceedings+HongKong+2001&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Zachmann&aufirst=Gabriel&atitle=Optimizing+the+Collision+Detection+Pipeline&title=Game+Technology+Conference+GTEC+2001.+Proceedings+HongKong+2001&date=2001

	Introduction
	Architecture Evolution
	From Sequential CPU to Multi-core Architecture

	Related Work
	Collision Detection
	Broad phase
	Narrow phase

	Parallel Collision Detection
	GPU-based algorithms
	CPU-based algorithms
	Hybrid-based algorithms

	Positioning

	Multi-Core Broad Phase
	Multi-Threaded Algorithm
	Results
	Positioning Key

	Multi-GPU Broad Phase
	GPU "Sweep and Prune"
	Spatial Subdivision for Multi-GPU
	Results

	Conclusion
	Acknowledgements

