Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

The MIRELA framework: modeling and analyzing mixed reality
applications using timed automata

Jean-Yves Didier, Bachir Djafri, and Hanna Klaudel

IBISC Laboratory — CNRS FRE 3190
University of Evry Val d’Essonne, France
email: jean-yves.didier@ibisc.univ-evry.fr
bachir.djafri@ibisc.univ-evry.fr
hanna.klaudel@ibisc.univ-evry.fr

Abstract

Mixed Reality (MR) aims to link virtual entities with
the real world and has many applications such as mili-
tary and medical ones.

In many MR systems and more precisely in aug-
mented scenes, one needs the application to render the
virtual part accurately at the right time. To achieve
this, such systems acquire data related to the real world
from a set of sensors before rendering virtual entities.
A suitable system architecture should minimize the de-
lays to keep the overall system delay (also called end-
to-end latency) within the requirements for real-time
performance. In this context, we propose a compo-
sitional modeling framework for MR software archi-
tectures in order to specify, simulate and validate for-
mally the time constraints of such systems. Our ap-
proach is first based on a functional decomposition of
such systems into generic components. The obtained
elements as well as their typical interactions give rise
to generic representations in terms of timed automata.
A whole system is then obtained as a composition of
such defined components.

To write specifications, a textual language named

Digital Peer Publishing License

Any party may pass on this Work by electronic
means and make it available for download under
the terms and conditions of the current version
of the Digital Peer Publishing Licence (DPPL).
The text of the licence may be accessed and
retrieved via Internet at
http://www.dipp.nrw.de/.

First presented at the Virtual Reality International Conference (VRIC) 2008,
extended and revised for JVRB

MIRELA (MlIxed REality LAnguage) is proposed
along with the corresponding compilation tools. The
generated output contains timed automata in UPPAAL
format for simulation and verification of time con-
straints. These automata may also be used to generate
source code skeletons for an implementation on a MR
platform.

The approach is illustrated first on a small example.
A realistic case study is also developed. It is mod-
eled by several timed automata synchronizing through
channels and including a large number of time con-
straints. Both systems have been simulated in UP-
PAAL and checked against the required behavioral
properties.
Keywords: Mixed reality systems modeling, real-
time, timed automata, formal analysis, simulation,
model-checking.

1 Introduction

Ensuring real-time properties of mixed reality (MR)
systems encounters some obstacles often leading to
inefficient, less satisfactory or sometimes even inef-
fective applications. This is partly due to the growing
complexity of such systems, but also to the wide range
of available human computer hardware interfaces (sen-
sors) and several kinds of sensorial modalities, each of
them giving rise to its own rendering loop. Indeed,
sensors as well as rendering loops have their own time
constraints, generally different from each other.
Nowadays, the usual process for developing MR
applications relies mostly on fast response and high
hardware performances to cope with time constraints.
Yet, for some applications (for example, robot teleop-
eration or haptic ones) the respect of time constraints

urn:nbn:de:0009-6-17423, ISSN 1860-2037

http://www.dipp.nrw.de/

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

may be critical. It may be worth, in such a context,
to validate the application, before testing it on actual
hardware, by modeling it and applying formal method
techniques to prove its robustness. The benefits may
be twofold: it may avoid unnecessary cost related to
a possible deterioration of hardware, and in the case
of design errors, it allows to identify their sources (in
terms of unsatisfied time constraints of components)
and to correct them and validate again.

In this paper we are interested in specification and
validation of heterogeneous, reconfigurable, open but
not hot pluggable MR systems. We propose a com-
positional modeling framework for software architec-
tures in order to specify, simulate and validate for-
mally their time constraints, as well as to generate a
prototype for MR platforms.

Our intention here is not proposing a new formal-
ism, but taking advantage of known time constraints
specification and verification techniques in the design
and the programming of real-time systems. We chose
for this purpose to use a prominent model of timed
automata [[AD94]] and its associated tool UPPAAL
[LPYO97|]. The latter allows simulating systems, ver-
ifying, through model-checking, various reachability
properties, and detecting deadlocks (meaning that the
specified time constraints cannot be met by the sys-
tem). Typically, it can answer the designer questions
which may look like “starting from its initial state, can
the system reach a given state in a given delay?”.

Our approach is first based on a functional decom-
position of such systems into generic components. The
obtained elements as well as their typical interactions
give rise to generic representations in terms of timed
automata and the whole application is then obtained
as a composition of such defined components. To ease
writing specifications, a textual language is also intro-
duced along with the corresponding compilation tools.
The generated output contains timed automata in UP-
PAAL format for simulation and verification of time
constraints. Once validated, this formal model of the
system is used to generate automatically source code
skeletons for an implementation on a MR platform.

The paper is structured as follows: After an in-
troductory section exposing the related works, we
present intuitively our framework and its main ele-
ments, namely a textual language MIRELA, an ex-
isting verification and simulation tool UPPAAL and
a component based MR development environment
ARCS. The sections 3 and 4 are devoted to the presen-
tation of MIRELA syntax and its semantics in terms

of timed automata. The sections 5 and 6 illustrate the
aspects related to the verification and validation (using
existing tools) and the rapid prototyping. A classical
MR example is unfolded step by step in order to il-
lustrate the approach. A more important case study is
developed in the last section.

2 Related works

Modular software architectures and frameworks for
MR have been addressed during these past years by al-
most thirty different projects of frameworks [EBMO0S5]].
Amongst the most remarkable ones, we can mention
the StudierStube led by the Technical Universities of
Vienna and Graz (Austria) [Fuh99]. This project is
based on the Openlnventor API and uses the concept
of distributed scene-graphs. One of the sub-projects of
StudierStube mainly focuses on sensor configuration
issues [RSO1]] and on data processing aspects after be-
ing acquired by sensors. This is performed by using an
object-oriented approach combined with software en-
gineering practices, like configuration files written in
XML.

The DWAREF (Distributed Wearable Augmented
Reality Framework) project relies on distributed ser-
vices. Each tracker becomes a service broadcasting
data to other services (that could be filters, rendering
loops,...) using an extension of CORBA [BBK01].

ImageTclAR [[OTXO03[] aims to provide a rapid pro-
totyping environment to test and design MR applica-
tions. People can use proposed components or develop
their own ones in C++ whereas the whole logical glue
between components is written using Tcl interpreted
scripts.

Tinmith [PTO3] is an API for developing mobile AR
systems. It uses an object store, which is based on
Unix file hierarchy, and allows applications to register
callbacks on these objects. Once these objects change
(for example, when one sensor acquires a new data set)
an event is sent to trigger these callbacks.

The AMIRE (Authoring Mixed Reality) project
[HZHLO3]] emphasizes component based develop-
ment. This project embeds a graphical tool to connect
and configure components. Data concerning the con-
figuration of the application are stored in an XML file.

Finally, the ARCS (Augmented Reality Component
System) project [DOMOG0] is also a component-based
framework with graphical tools to help to design MR
applications. It focuses on the component life span in
running these applications and on the reconfigurability

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

000 Mirela Editor

File Project View Editor Help

H| S] L) [W l ®] ||| Graph to Mirela | Mirela to Graph | s I& K3 m * [#& | Group Manager | | [Hide Details | Show Details |

Periodic sensor (=8
Camera
20000
30000
35000
45000
Name : Camera
Min Start : 20000 %)
‘:” PriorityUnit
Min Stop : 30 000 3]
5 25000
Min : 35000 v 35000
Max : 45 000 @
RenderingUnit
15000
5000
2100
3100
(Parameters manager)

] Hold

Selection

Aperiodic Sensor
Periodic Sensor

At Least Processing Unit
Both Processing Unit
Priority Processing Unit

Unary Processing Unit

Rendering Unit

Controller

av -

Camera = Periodic(20000,30000)[35000,45000];

GUI = Aperiodic(2000);

PriorityUnit = Priority(1)[25000,35000];
RenderingUnit = Rendering(15000,5000)[2100,3100];

{

CollectorCtr(Camera)@(PriorityUnit,0);
CollectorCtr(GUN@(PriorityUnit,1);
MemoryCtr(PriorityUnit,0)@(RenderingUnit)[2000,3000];
GroupCtr(GUI=>Camera);

1

Line : 80, Column : 237 (Text position : 199)

Figure 1: MIRELA Graphical Editor.

™ o

File Edit View Tools Options Help
Bls/@aja 2|[Kl@ - =

Editor rsimulatnr rVerifier \

/home/didier/Travaux/]VREO8/case_study/case study3.xml - UPPAAL

oy
x

g rroject
D Declarations

o & PeriodicSensor

o= ‘) Aperiodicsensor

& ‘% Processing

o 5 BothProcessing

o 5 ArleastFrocessing

o ‘& Collectorcir

o 8 MemonyCtr

o €} VoidGroupCtr

o €} Rendering

o €} MemoryRegister

o €} ErrorManagement

o= & Init
D Systemn declarations

|; Name: [PeriodicSensor Parameters: [const_id_sensorP i

Suspend2
pause[i]?

resumeli]?

i resume
i|Suspendl

ActivelnProgress Activel

Suspend3

g

pause[il?

resumelil?

Init pauselil?

start[i]? started[i]!

h2:=0

hZ>tmin_init _Psensor[i

h»:t\me_mm_sensorﬁ

h<=time_max_sensor

[
get_datali]
h:=0
stopli]?
hli=0

pauselil?
; resume[i]? hl>tmin_shut_sensor[i] -
:E Suspends, stopped[il start[if? stop(il?
i h1l:=0
pauselil?
stop[il? errar_sensar[i]!
hl:=0 h>time_max_sensarfi]

ErrorStopped

Figure 2: UPPAAL in timed-automata edition mode.

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

of data flow between components at runtime.

These projects are mostly emphasizing modular de-
velopment or even component based engineering to
deal with the heterogeneity challenge. Of course, our
approach is related to the above, but we are especially
interested in some real-time aspects of MR applica-
tions. Usually, the real-time in the MR field of re-
search may be understood in various ways and seen
as a real world time in simulation or as low latency
man-machine interactions, or even as a preservation
of imposed time constraints. In this paper, we aim at
addressing the last point of view which focuses on op-
erational deadlines, from events to system response.

Real-time systems may be specified using numer-
ous dedicated methods and formalisms. Most of them
are graphical semi-formal notations allowing a state
machine representation of the behavior of the system.
Among the most popular formalisms, we may quote
Statecharts [Har87|] or UML/RT [Dou97]]. Such visual
representations do not enable the verification of the
system properties, and it is necessary to associate a for-
mal semantics to them, based in general on automata,
process algebras [HPSS&7], Petri nets [Rei85]] or tem-
poral logics [MP92]. In our approach, we chose to use
timed automata [[AD94], which have the advantage to
be rather simple to manipulate and possess adequate
expressivity in order to model time constrained con-
current systems. Moreover, there exists for this model
powerful implemented tools (e.g., UPPAAL [LPYO97])
allowing model-checking and simulation.

3 The MIRELA framework overview

This section presents a general view of the MIRELA
architecture: its basic elements, a general decomposi-
tion scheme as well as its main components.

3.1 An overview

The MIRELA framework is composed of three ele-
ments forming a chain as shown in figure 3}

o A textual language called MIRELA (for Mlxed
REality LAnguage) provided with timed au-
tomata semantics (forming the core of this ap-
proach), coupled with a graphical editor to gener-
ate the code using visual metaphor (see figure [I);

e An existing model-checking and simulation tool:
UPPAAL which is using its own query language
(see figure 2));

e A component based environment focused on the
development of MR applications like ARCS.

The MIRELA framework allows to describe MR ap-
plications using a simple specification language. The
corresponding code is automatically translated into a
system composed of a family of timed automata re-
specting specified timed constraints. The UPPAAL
tool allows to analyze the model of the application.
If some errors are discovered at this stage, the specifi-
cation code may be corrected and this process may be
repeated until obtaining a satisfactory solution. Then,
the obtained model may be used to generate a pro-
totype of the MR application for a target platform
(ARCS).

MIRELA
specification language

compilation [) if errors

UPPAAL
timed automata

l prototyping

ARCS
application platform

Figure 3: MIRELA specification chain for MR soft-
ware architectures.

3.2 A data flow-oriented software architec-
ture and the MIRELA syntax

In this paper, we consider MR architectures organized
according to a data-flow oriented scheme, from sen-
sors to the actual results produced by the rendering
loops. As represented in figure [data are produced
by sensors (cameras, GPS, motion trackers, ...), then
they are processed by processing units (in charge of
noise filtering, image processing, ...) and stored in a
shared memory where they are picked up by the ren-
dering loops. A rendering loop is a pipeline which
processes data and transforms them to the actual ren-
dering result (images or force feedback according to
the rendering device, ...).

The syntax of MIRELA language follows this de-
composition scheme. A MIRELA specification is

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

Sensors

'

Processing Units

'

Shared Memory

{

Rendering Loops

Figure 4: A decomposition scheme of an MR software
architecture.

composed of two parts: a ComponentList declaring
all the components like sensors, processing units, and
rendering loops, and a SheetList which is a nonempty
list of configurations describing how these elements
should work together. Such a configuration, called a
sheet, is composed of a non empty set of controllers
needed to represent the connexions between all the
components of the system and to manage sensors con-
flicts. Declarations of sensors, processing units, and
rendering loops are parameterized and relate to time
constraints and delays needed for the actual imple-
mentation. In particular, each sensor have their corre-
sponding controllers used as their composition inter-
face. We detail below the main characteristics of the
elements of the language, its complete syntax is pre-
sented in figure [3

3.3 Main components
3.3.1 Sensors

The sensors are devices that capture data from the en-
vironment. We assume that each sensor has a unique
output (possibly multiplexing sensor’s data). The tem-
poral characteristics of the sensors allow us to roughly
classify them into two categories:

e Periodic sensors capture data at periodic time ac-
cording to a well defined cycle. This periodicity
can be expressed by time constraints, correspond-
ing to the minimum and the maximum time of
data-gathering. The other time constrains taken

into account are the delays to switch sensors on
or off.

e Aperiodic sensors collect data only when an
asynchronous event occurs. They may be a repre-
sentation of a physical sensor (like a switch or any
warning device) as well as an abstraction of any
system using an event interface (typically graph-
ical user interface). Such sensors have to respect
a minimum delay between two events, which can
be expressed as a time constraint and is also as-
sumed to be the same as a minimal switch off de-
lay.

3.3.2 Processing units

A processing unit (PU) processes data received from
sensors. An example of data processing can be an ex-
traction of position and orientation of a camera with
respect to its workspace using image processing tech-
niques. A processing unit has time constraints cor-
responding to the minimum and the maximum time
of processing, and may have several inputs and out-
puts. In our framework, we consider four basic kinds
of PUs, that assume the number of inputs is two at
most and one at least. This is not a limitation: a PU
with more than two inputs may be modeled using a
composition of several basic ones. Each basic pro-
cessing unit may have several outputs n_outputs, with
n_outputs > 1. The outputs are supposed to be trig-
gered sequentially according to their predefined rank
comprised between 0 and n_outputs — 1. Accordingly
to the kind of PU, we distinguish:

o A Unary PU starts processing the data as soon as
it is received on its unique input,

o An AtLeast PU starts processing when data are
received on at least one of its two inputs,

e A Both PU has two buffered inputs and starts pro-
cessing when data are ready in both buffers,

o A Priority PU has one master input and one
buffered slave input. It starts processing when
data are ready in master input and possibly uses
buffered data from the slave input.

3.3.3 Shared memory and rendering loops

We assume that the memory is composed of regis-
ters supporting read and write operations which are
mutually exclusive. The rendering loops are periodic

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

id = Sensor; | id = ProcessingUnit; | id = RenderingLoop;

Periodic(min_start, min_stop)[min,maz| | Aperiodic(min_event)

Both(n_outputs)[min,maz] | AtLeast(n_outputs)[min,mazx]

| Priority(n_outputs)[min,mazx] | Unary(n_outputs)[min,maz]

Rendering(time_rendering, time_processing)|min_read,maz_read)]

| ProcessingCtr(id_source, #output)Q(id_target, #input);

| MemoryCtr(id_source, #output)Q(id_rdg)|min_write,maz _write];

Application = ComponentList Sheetlist
ComponentList ::=

| ComponentList ComponentList
Sensor =
ProcessingUnit 1=
RenderingLoop 1=
SheetList == {ControllerList} | SheetList SheetList
ControllerList ~ ::= CollectorCtr(id_source)Q TargetList;

| GroupCtr(master_id => SensorList);

| ControllerList ControllerList
TargetList = (id_target, #input) | TargetList TargetList
SensorList = id_sensor | SensorList, SensorList

Figure 5: The MIRELA syntax.

and their processing is subdivided in two phases cor-
responding to the processing and rendering time con-
straints. Since rendering loops are reading data from
memory, the allowed interval of reading is taken into
account.

3.3.4 Controllers

The controllers are components that are used to define
a configuration of a MR system by linking different
components and managing conflicts that may exist be-
tween sensors. There are four kind of controllers:

e A Collector controller links a sensor to one or
several processing units. It broadcasts sensor’s
data to associated processing units;

o A Processing controller links two processing
units. It connects the output of one processing
unit to the input of another processing unit;

e A Memory controller makes two different links:
connects a processing unit output to a memory
register and this memory register to a rendering

loop unit. This controller has a particularity to
take into account the allowed interval of writing
down data into the memory register;

o A Group controller manages conflicts between a
sensor and a group of sensors. In other words, if
the main sensor is activated, it deactivates (sus-
pends) all sensors into the group it supervises;

Example 1. Step I. We consider an example of a
classical setup for an MR application involving a cam-
era (C') and a graphical user interface (G)) with one
visual rendering loop. C is modeled as a periodic sen-
sor while GG as an aperiodic one. We assume that the
camera C may be suspended by the graphical user in-
terface (G, which supervises it. Following the philoso-
phy of the language, the corresponding application can
be schematically represented as shown in figure[f] The
MIRELA code is given below, with constant values re-
ferring to time constraints expressed in microseconds.

C
G

Periodic (20000,30000) [35000,45000];
Aperiodic (2000) ;

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

Pr = Priority (1) [25000,35000];

R = Rendering(15000,5000) [2100,3100];
{

CollectorCtr (C)@(Pr,0);
CollectorCtr (G)@ (Pr,1);

MemoryCtr (Pr,0)@(R) [2000,30007;
GroupCtr (G=>C) ;

}

The four first lines declare the components of the
system:

e aperiodic sensor C with the minimal initialization
and switch off delay of 20ms and 30ms, respec-
tively, and of the period comprised between 35ms
and 45ms;

e an aperiodic sensor G with the minimal delay be-
tween two events of 2ms (including the switch off
event);

e a priority processing unit Pr with 1 output and
the processing time between 25ms and 35ms;

e a rendering loop R with the rendering time of
15ms, the processing time of 5ms, and the read-
ing time (memory access) between 2,1ms and
3,1ms.

The remaining part describes all the connections be-
tween these elements. First, the connection between C
and the input port O of Pr, and that of G and the input
port 1 of Pr are declared. Next, is declared the con-
nection between the output port O of Pr and the ren-
dering loop R with the writing time specified between
2ms and 3ms. The last line declares a group with G
as a supervisor and a list composed of a unique super-
vised sensor C; see also the abstract scheme in figure 6]
in order to visualize it.

Each element of this functional decomposition will
give rise to a timed automaton, as well as the logical
glue which links them together. The actual semantics
will be obtained by associating to each syntactical ele-
ment one or more corresponding timed automata, and
the whole specification will be given by a parallel com-
position of all of them.

4 Timed automata modeling of
MIRELA specifications

Before defining timed automata representation of
MIRELA specifications, we briefly recall the model
and its properties.

Camera Cr=——— c¢Gr GUIG
I |
cCol cCol
7
Priority Pr
0

T eMW

Rendering R

Figure 6: An abstract view of the MIRELA specifica-
tion.

4.1 Timed automata

A timed automaton (see figure [7)) is a finite state au-
tomaton provided with a continuous time representa-
tion through real-valuated variables, called clocks, al-
lowing to express time constraints. Generally, a timed
automaton is represented by an oriented graph, where
the nodes correspond to locations in which the system
may be and the arcs indicate a possible location switch.
The time constraints are expressed through clock con-
straints and may be attached to locations as well as
to arcs. A clock constraint is a conjunction of atomic
constraints which compares the value of a clock z, be-
longing to a finite set of clocks, to a rational constant c.
Each timed automaton has a finite number of locations,
one of them being tagged as initial. In each location,
the time progression is expressed by a uniform growth
of the clock values. In that way, at each instant, the
value of the clock x corresponds to time passed since
the last reset of z. A clock constraint, called an invari-
ant, may be associated to each location and has to be
satisfied in order for the system to be allowed to stay
in this location. The arcs may carry clock constraints,
called guards, labels allowing synchronization, and in-
dication about clock to be reset.

In UPPAAL [LPY97]], which is the tool used in our
modeling, a timed automaton is a finite structure han-
dling, in addition to a finite set of clocks evolving syn-
chronously with time, a finite set of integer-valuated
and Boolean variables. A model is composed of a
set of timed automata, which communicate using bi-
nary synchronization through arc labels and a syntax
of emission/reception. By convention, an arc label k!
indicates the emission of a signal on a channel k. It is
supposed to be synchronized with the signal of recep-

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

Wait

©)

Init ProcessingInProgress

work_processing? ~ clk>=tprocessing_min

clk:=0 clk<=tprocessing_max

free_processing!

clk>tprocessing_max
error_processing!

Figure 7: Example of a timed automaton modeling the
processing of a task, where clk is a clock. After the
reception of a signal work_processing!, the automa-
ton spends at least tprocessing_min time in the loca-
tion Init. Then, it sends the signal free_processing! if
the processing time does not exceed tprocessing_mazx,
otherwise, it emits error_processing!.

tion, represented by a complementary label k7. Ab-
sence of synchronization labels indicates an internal
action of the automaton.

The execution of the model starts in the initial state
(corresponding to the initial location of each automa-
ton with initial values of all integer and Boolean vari-
ables and all clock values set to zero), and is a succes-
sion of reachable states. The system state change may
occur for three reasons:

e by time progression corresponding to d time units
in the locations of the components, provided that
all the location invariants are satisfied. In the new
state, the clock values are increased by d and the
integer variables do not change;

e by a synchronization if two complementary ac-
tions in two distinct components are possible,
and if the corresponding guards are satisfied. In
the new state, the corresponding locations are
changed and the values of clocks and of integer
variables are modified according to the reset and
update indications;

e by an internal action if such an action of a com-
ponent is possible, it may be executed indepen-
dently of the other components: the location and
the variables of the component are modified as
above.

Another peculiarity of UPPAAL, useful in express-
ing a kind of synchronicity of moves, is the notion of
“committed” locations, labeled in the figures by a spe-
cial label C; see, for instance, the location Activeln-
Progress in the automaton of figure [§] In such a lo-
cation, delaying is not permitted. This implies an im-

mediate move of the concerned component. Thus, two
consecutive transitions sharing a committed state are
executed without any intermediate delay.

A complex system may be represented by a single
timed automaton being a product of a number of other
timed automata. The set of locations of this resulting
automaton is the Cartesian product of locations of the
component automata, the set of clocks is the union of
clocks, and similarly for the labels. Each invariant in
the resulting automaton is the conjunction of the in-
variants of the locations of the component automata,
and the arcs correspond to the synchronization guided
by the labels of the corresponding arcs. Due to the
presence of real variables (clocks), its behavior defines
an infinite state space which may be represented in a fi-
nite manner by partitioning it into finitely many equiv-
alence classes so that equivalent states exhibit similar
behaviors. This allows it to be analyzed using auto-
mated techniques.

4.2 Timed automata for MIRELA specifica-
tions

In the following, we present an example of a generic
timed automaton (template) illustrating one of the
main elements composing our system. The remain-
ing timed automata templates (for aperiodic sensors,
processing units, memory, rendering loops and con-
trollers) used in our approach are constructed in anal-
ogous way and may be found in the appendix. The
complete system comprises 16 timed automata tem-
plates.

Let us consider the timed automaton in figure
showing a modeling of a periodic sensor identified
by ¢. Initially, it is in its initial location Off and
its three clock variables h, hl and h2 are set to
0. At the reception of a signal start[i]! which
matches the arc label start[i]?, it moves to the lo-
cation ActiveInProgress, resets the clock h2
and after spending at least tmin_init_Psensor|i] time
in Activel, it arrives to the location Init with
the clock h reset to 0. The core of its periodic ac-
tivity takes place between the locations Init and
Active2. Actually, if it is neither suspended nor
stopped, it spends at least time_min_sensor[i] time
in the location Init, goes to the location Active?2,
and come back to Init before time_maz_sensor]i],
reset the clock A and repeats the same behavior again.
When working, it may be suspended (and then re-
sumed) or stopped by an external action. It may also

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

Suspend?2 Suspend3 Suspend4

" i
resumeli]? pauseli]? resumeli]? risfi?e[l] ’ resumeli]?

Suspend! off ActivelnProgress Acti pausel[i]? . pauseli]?

=Y ctivel Init
- /® - . : - Active2
start[i]? started(i h>=time_min_sensori]
h2:=0

pause[i]?

resumeli]?
Suspend5,

h1>tmin_shut_sensorli]
stopped]i]!

]! h2>tmin_init_Psensorfi]
h:=0

startfi]?

h<=time_max_sensor]i]

stopli]?

get_datali]!
h1:=0 K

h:=0

pauseli]?

stopli]?
h1:=0

stopli]?
h1:=0

error_sensorfi]!
h>time_max_sensorfi]

ErrorStopped

Figure 8: A periodic sensor modeling.

happen that it does not meet the specified delays in
which case, it launches an error procedure.

Example 1. Step II. The translation to timed au-
tomata of our example instantiates the templates de-
fined above for each component of the application. For
each line of the MIRELA code, we have at least one in-
stantiated automaton. The resulting model comprises
in this case 13 timed automata synchronizing through
channels and including a large number of time con-
straints.

S Model-checking and simulation

Model-checking is the process of checking whether a
given model, in our case the obtained set of timed au-
tomata, satisfies a given property, usually expressed as
a formula in a query language. To check a property,
the model-checker will explore all the reachable states
of the system and answer if the property is satisfied or
not. It allows in particular to prove that the time con-
straints specified in the automata are coherent or not
with the expected behavior of the system. In UPPAAL,
the query language allows to express, for instance:

e Reachability properties - denoted E<> p (can we
reach, starting from the initial state, a state where
p is satisfied?),

e Invariant properties - denoted A[] p (is p satis-
fied in all states reachable from the initial one?),

e Temporal implication (or liveness) properties -
denoted p ——> g meaning that if p is satisfied,
then g is satisfied eventually.

The reachability and invariant properties rely only
on reachability of states. It means that if the con-
cerned states are potentially reachable, the model-
checker will give a positive answer. Generally, it is not
enough for guaranteeing liveness properties implying
the states to be eventually reached. It means, in partic-
ular, that checking such properties make sense only for
systems (or fragments of systems) satisfying progress
conditions (expressed for example by means of loca-
tion invariants or committed locations).

It is well known that even for small systems, the
number of reachable states may be huge. For instance,
it is already about 200,000 states for the example 1,
and more than 6,700,000 states for the case study de-
veloped in the next section. In practice, this means
that it is impossible to analyze it by hand whereas
model-checking tools can do it automatically and ex-
haustively, therefore furnishing a proof.

Example 1. Step III. Table [I] summarizes the
queries performed for the example as well as the re-
sults returned by the model checker. We should notice
that these queries are also used during the modeling
process to check if the system has the expected be-
havior, validating step by step the construction of the
model.

One of the properties we typically want to check is
the absence of a deadlock, which is the case and proves
the application is meeting its time constraints (cf. Ta-
ble[T] query 1). However, the absence of a global dead-
lock does not guarantee that some parts are not locked.
For example, if we change the timing constraints in the
rendering loop and make an obvious error like having
a rendering algorithm spending more time than the pe-
riod of the rendering loop, then this locks the render-

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

| Query Result
1| A[] not deadlock true
2 | E<> Rendering (0) .End false
3 | E<> (PeriodicSensor (0).End and Rendering (0) .Reading) true
4 MemoryRegister (0) .Locked —--> MemoryRegister (0) .OnStandBy true
5| E<> (MemoryCtr (0) .Write and Rendering(0) .Reading) false
6 | APeriodicSensor (1) .Active —-> (PeriodicSensor (0) .Suspendl or true
PeriodicSensor (0) .Suspend2 or PeriodicSensor (0) .Suspend3 or
PeriodicSensor (0) .Suspend4 or PeriodicSensor (0) .Suspendb)
7 | E<> MemoryCtr (0) .Write true

Table 1: Queries and results for the example 1.

ing loop whereas the other parts of the system are still
running (cf. Table[I] query 2).

Therefore, we should check the following proper-
ties of the system (the answers always confirmed the
expected behavior):

o [s the rendering loop able to perform its task even
if the periodic sensor is disabled (cf. Table [I}

query 3)?

e When we lock the memory either for reading or
writing, will the memory eventually unlock (cf.
Table[I] query 4)?

e Can we write and read in memory at the same
time (cf. Table[I] query 5)?

e When the aperiodic sensor is activated, will the
periodic sensor eventually be suspended (cf. Ta-
ble |1} query 6)? Since we don’t know in which
state the periodic sensor will be suspended, we
will have to check all suspended states,

e Can the system write data in memory (cf. Table[I]
query 7)?

When a reachability property is answered by true or
an invariant property is answered by false, UPPAAL
can also produce traces (paths) proving its answer. The
model-checker can also look for traces that are the
shortest in time of execution or the fastest in terms of
steps composing the trace. Using traces makes also
possible to obtain some numerical values attached to
the properties we want to check. For example, by at-
taching a clock initialized at the start-up of the periodic
sensor, we are able to know the minimum amount of
time needed before the first value is written in memory.

However, this query language cannot express some
interesting questions about the system. Typically, we

cannot express how many times a given state will be
reached. That is why model-checker tools are also
coupled with simulation tools, the latter ones giving
finer indications on the dynamic behavior of the sys-
tem.

Simulation consists in making automata evolve step
by step (manually or randomly) and observing sev-
eral variables and states of the system. We carried out
some simulations for example 1 and the obtained re-
sults confirm the expected behavior of the system com-
ponents at work. It was possible to analyze particular
scenarios, like the activation of the aperiodic sensor
suspending the periodic sensor. Up to some extent, the
simulation provides also some quantitative results, for
example, the balance between reading and writing ac-
cesses to memory.

6 Rapid prototyping

A specification composed of timed automata may be
used for an automatic code generation for a concrete
implementation platform as mentioned in section
(see figure [3). However, we need to take into account
the difference between theoretical and practical time.

Generally, this problem is handled into two different
ways [ATO0S]]. First, the modeling approach advocates
including the modeling of the platform on which the
actual implementation should take place. In particular,
such a modeling will take into account actual commu-
nication, initialization, shutdown delays and the delays
of process launching.

Second, the semantic approach consists in modeling
an abstract view of any implementation platform in-
cluding tolerance parameters for the various time con-
straints. It also comprises a theoretical model of a dig-
ital clock which allows time triggered updates of the

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

Figure 9: Physical setup of the application : A) user
workspace with the haptic arm and graphical display;
B) real workspace with the camera and the probe.

system.

We use the second approach in order to automat-
ically generate application skeletons for the ARCS
platform which is a component-based framework (see
figure[3). It is customized to meet the requirements of
MR applications (mostly time constraints) and focuses
on the design of stand-alone applications. Each appli-
cation design consists in a list of components, commu-
nication links and initializations. Like any other plat-
form, it relies on a digital clock. This general archi-
tecture has directly inspired the structure of our timed
automata modeling and MIRELA language, except the
digital clock which has to be added. So, the elements
of the modeling can find a natural counterpart in the
ARCS environment.

Each obtained timed automaton is translated into a
component, including the digital clock, except the pro-
cessing controller which has a direct counterpart in its
communication scheme.

7 A case study

We propose to study the application presented
in [BDKOS]. It focuses on applying virtual painting on
real objects having a priori unknown geometries. This
mixed reality interaction involves a probe in the real
workspace to touch objects. The probe has a virtual
counterpart which is a virtual tool with various physi-
cal characteristics. By moving the haptic arm, the user
remotely moves the probe. When the probe comes
into contact with real objects, it returns forces. These
forces are measured and returned to the user combined
with virtual forces through by mean of a haptic arm
(see figure).

At the same time, a camera is capturing the scene
and some image processing is performed to remove
the real probe and replace it by the virtual tool. Fig-

ure shows the processing steps leading to the fi-
nal mixed scene. First, a reference image of the real
object is taken. Then, the probe is introduced in the
real workspace and located in the camera space. Fi-
nally, the probe is removed from the real scene using
chroma-keying and a virtual tool is overlaid on the im-
age instead of the probe. The painting is also overlaid
depending on the forces returned by the probe and the
virtual forces computed to simulate the virtual tool.

(@ (b)

©) (d)

Figure 10: Mixed scenes taken from the application:
a) the real object, here a SGI workstation, b) the probe
was painted in red in order to remove it from images
later, c) the probe is removed and replaced by a virtual
tool, d) virtual painting has been applied on the real
workstation.

This application involves, in its nominal function-
ing, a camera (C), a haptic arm (O), a force sensor

(CameraC| | OmniO | | ProbeP |
l |
| cCol | | cCol | I cCol I
ol 1 01
Both B AtLeast A
0 1
M3

| Rendering G | Rendering H | |Rcm;|¢ring MI

Figure 11: Abstract view of the case study.

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

coupled to the probe (P). Concerning the rendering,
both graphical (G) and haptical (H) rendering are per-
formed as well as the mechanical (M) control of the
probe, which is assimilated to a rendering loop (see
figure [I1). The whole is processed by two processing
units:

e the first one (A) receives positions from O and
real forces from P, and computes and send virtual
forces to M and positions to H,

e the second one (B) receives periodically images
from C, incorporates to them virtual objects ac-
cording to the position read from O, and sends
transformed images to G.

This corresponds to the following MIRELA spec-
ification, where the constant values referring to time
constraints are expressed in microseconds.

C = Periodic(20000,30000) [35000,450007;
O = Aperiodic(500);

P = Periodic(300000,400000) [300000,4000007;
B = Both (1) [20000,30000];

A = AtLeast (2) [500,750];

G = Rendering(15000,5000) [2100,31007];

H = Rendering(1000,200) [100,200];

M = Rendering (400000,200) [100,200];

{

CollectorCtr (C)@(B,0);
CollectorCtr(0)@Q(A,0) (B,1);
CollectorCtr(P)@(A,1);
MemoryCtr (B, 0)@(G) [2000,3000];
MemoryCtr (A,0) @ (H) [200,300];
MemoryCtr (A, 1)@ (M) [100,200];

}

Figure [11| depicts the abstract scheme of the data-
flow of the application. In this case, the state space
generated during the model-checking process is huge
(several millions of states) making it prohibitive for
queries demanding to explore it entirely.

The reachability properties have been checked and
their results are summarized in table 2] By answer-
ing to these queries, the model checker (see figure
can help to determine step by step the data progression
through the system. For instance:

e Do the sensors acquire and transmit data accord-
ing to their specified time constraints (cf table [2]
queries 1-3) ?

o Isthe AtLeast processing unit (A) able to perform
its processing (cf table 2] query 4) ?

o Are the inputs of the Both processing unit (B)
able to bufferize the data from one sensor in order
to wait for the data coming from the other sensor
(cf table 2 queries 5,6) ?

e [s the system able to put data into memory (cf
table 2| queries 7,8) ?

The state space is very huge and some queries take
very long to be answered (sometimes several hours).
For some properties (in particular, reachability ones),
it may be more efficient to perform simulations (see
figure[T3) to observe the behavior of the system. These
simulations provide traces (lists of states and transi-
tions between them) that are storing clock values and
provide indications concerning time intervals. There-
fore, it is possible to evaluate, for example, end-to-end
latency of a system (the time the system spends in pro-
cessing a data from its acquisition to the final render-
ing), which may be critical for some MR applications
[[Azu93|.

In this case study, we can estimate the minimal
amount of time needed to acquire data, process them
and write them into each memory register. We ob-
tained that the mixed scenes are transmitted to memory
in at least 55 ms when the data needed for haptic ren-
dering are transmitted in 500 us. Since the rendering
loops are working with different known time cycles,
the minimal end-to-end latency for mixed scenes can
be estimated to 73 ms (respectively to 800 us for hap-
tic data). All these results confirm the model meets the
specified time constraints making us reasonably confi-
dent about the system implementation.

8 Conclusion and perspectives

We introduced in this paper a compositional model-
ing framework for MR software architectures, initi-
ated in [DDKOS8c, IDDKO8b|| and dedicated to specify
and validate formally the time constraints of such sys-
tems using timed automata. The presented framework
is an extended and completed version of [DDKOS8a]|
and offers in addition to the previous versions a sim-
ple language, called MIRELA, allowing to express
in a concise way the elements of the MR architec-
ture with their connections, delays, periods...using
generic components. The basic components taken into
account are periodic and aperiodic sensors, various
kinds of processing units and links (controllers), mem-
ory registers and rendering loops. In particular, it is

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

Query

Result

| | AtLeastProcessing(l) .Entry) && Processing(l).Wait

1-3 | E<> CollectorCtr(X).NewEntry withx = 1,2,3 true

4 E<> AtLeastProcessing(1l) .End true

5 E<> BothProcessing(0) .Buffer2 true

6 E<> BothProcessing (0) .Bufferl && CollectorCtr (0).0OnStandby && true
CollectorCtr(2) .NewEntry

7 E<> MemoryCtr(l) .Write && (AtLeastProcessing(l) .End true
| | AtLeastProcessing(l) .Entry) && Processing(l) .Wait

8 E<> MemoryCtr (2) .Write && (AtLeastProcessing(l) .End true

Table 2: Queries and results for the case study.

| idier/T) ¥ _study3.xml - UPPAAL

File Edit View Teols Options Help

.

Overview

E<> CollectorCtr(0).NenEntry

E<> CollectorCtr(l).NenEntry

E<> CollectarCrr(2).NenEntry

E<> AtleastProcessing(1).End

E<> BOThProcessing(0).Buffer2

E<> WemoryCTr(1).Write && (ATLeastProcessing(1).End || AtleastProcessing(l).Entry) &% Processing(l).Wait

Check

Insert

Remove

000000

Comments

Query
[E<> CollectorCtr(0). NewEntry =2

@ Processing query
Verifying property 4 of 6.

Comment
—— Cancel
Fropiei 1

Status
Killing serverl =
Disconnected.

Disconnected.

Established direct connection to local server.

UPPAAL version 4.0.6 (rev. 2087), March 2007 -- server,
E<> CollectorCtr(0).NewEntry

Propeny is satisfied.

E<> CollectorCtr(l).NewEntry =
Propery is satisfied.

E<> CollectorCtr(2).NewEntry
Propeny is satisfied.

E<> AtLeastProcessing(l).End -

Figure 12: UPPAAL in model-checking mode

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(

2009), no. 1

fhome/didier/Travaux/)VRBO8/case_study/case_study3.xm| - UPPAAL

Eile Edit View Tools Options Help

g @
[B]a[E] a]a]a|[K]@]-]=
Editor | Simulator | Verifier
Drag out | Drag out L I ! B
| [PeriodiGensor@ =
Enabled Transitions MemoryCtr(l).PU_o(—| =
BothProcessing(0) [<] ;[MemorvCud.iax.o resume[07
MemoryCtr@.PU_o! Suspend
MemoryCur@).idx_o
Init(0).globalstart
Initch).globalStart hL>tmin_shut_sensorfo]
|| 0 h Suspends, stopped[0)
- y . 7
Reset h i1:=0
M. error_sensor(0]
Simulation Trace PeriodicSensor{l).h hitim e_max_sensor{0]
i .
(-, -, Init, Activel, EventProcessingInP* | :D,,,\
CollectorCtr(oy Processing(O).clk > [Perioai. ra) =
(=, -, Init, Activel, EventProcessinginP| Processing.clk > [l I [[r]
work_processing[0]: BothProcessing(@ MemoryCtr@.clk >| |ifsingaty BothProcessing@ AtLeastProcessing() CollectorCur@® CollectorCr®h) (
-, -, Init, Activel, EventProcessi u.dk > B
free_processing[0]: Processing(®) -- > MemoryCu@.dk >
(-, -, Init, Activel, EventProcessi e (m":"f:;
. endering(@).clod
output_processing[0linb: BothProces Rmmmgm o] [T e
(-, -, Init, Activel, EventProcessinginp| M"dﬂi"gm'dﬂ(kz
BothProcessing(0) [|Rendering@.dock1 [inpug)
(-, -, Init, Active 1, EventProcessingInP| = [Rendering).clock2
lock[0]: MemoryCtr(o) -- > MemoryRed Init(0).globalstart
(-, -, Init, Adtivel, EventProcessingInP|<| [Inft@.globalStart == OrStandby
AT vl Init(1).globalStart
i] work_processin aln)
Trace File: Jhome/didier/Travaux/]VRBOE '"“_a"_g'“"m[mh L]
‘ Prev | Next | Replay ‘ i h ProcessinglnPragress =|
N i
| open | sawve | Random | oh L
0 an
ol Endl L
Slow Fast = A4
11 IEE KT [il [v]

Figure 13: UPPAAL in simulation mode

possible to define groups of sensors which may be sus-
pended once another sensor is running. The MIRELA
specification is automatically translated into a corre-
sponding set of timed automata representing the given
system in order to be analyzed and validated using ex-
isting tools (UPPAAL). The approach has been illus-
trated on a simple example of an MR architecture and
used for a realistic case study. In both cases, the cor-
responding timed automata representations have been
simulated in UPPAAL and checked against basic be-
havioral properties. It permitted to show in particular,
that the system in the example was respecting its time
constraints. Using simulation cases, it was shown that
both systems were meeting their expected behaviors.

In our future work we will be interested in devel-
oping a method and tools allowing to use the obtained
timed automata model for editing and automatically
generating source code skeletons for an implementa-
tion on an MR platform. Another direction will be to
assist the model-checking process by providing means
allowing to abstract specification at an early stage of
design. This would result in developing abstraction
features to be added to our MIRELA compiler.

References

[AD94] Rajeev Alur and David L. Dill, A theory

of timed automata, Theoretical Computer

[ATO5]

[Azu95]

[BBK'01]

[BDKO8]

Science 126 (1994), no. 2, 183-235, ISSN
0304-3975.

Karine Altisen and Stavros Tripakis, |[For-
mal Modeling and Analysis of Timed Sys-
tems, Lecture Notes in Computer Sci-
ence, vol. 3829/2005, ch. Implementation
of Timed Automata: An Issue of Seman-
tics or Modeling?, pp. 273-288, Springer
Berlin / Heidelberg, 2005, 1SSN 1611-
3349.

Ronald Azuma, |Predictive Tracking for
augmented reality, Ph.D. thesis, Com-
puter Science Department, University of
North Carolina, feb 1995.

Martin Bauer, Bernd Bruegge, Gudrun
Klinker, Asa MacWilliams, Thomas Re-
icher, Stephan Riss, Christian Sandor, and
Martin Wagner, |Design of a Component-
Based Augmented Reality Framework,
Proceedings of the International Sympo-
sium on Augmented Reality (ISAR), oct
2001, 1SBN 0-7695-1375-1.

Benjamin Bayart, Jean-Yves Didier, and
Abderrahmane Kheddar, Force Feedback
Virtual Painting on Real Objects: A
Paradigm of Augmented Reality Haptics,
Haptics: Perception, Devices and Scenar-

urn:nbn:de:0009-6-17423, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Alur&aufirst=Rajeev&title=&atitle=A+theory+of+timed+automata&issn=0304-3975&date=1994&volume=1&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Alur&aufirst=Rajeev&title=&atitle=A+theory+of+timed+automata&issn=0304-3975&date=1994&volume=1&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Altisen&aufirst=Karine&title=&atitle=Formal+Modeling+and+Analysis+of+Timed+Systems&issn=1611-3349&date=2005&volume=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Altisen&aufirst=Karine&title=&atitle=Formal+Modeling+and+Analysis+of+Timed+Systems&issn=1611-3349&date=2005&volume=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Altisen&aufirst=Karine&title=&atitle=Formal+Modeling+and+Analysis+of+Timed+Systems&issn=1611-3349&date=2005&volume=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Azuma&aufirst=Ronald&title=&atitle=Predictive+Tracking+for+augmented+reality&date=1995
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Azuma&aufirst=Ronald&title=&atitle=Predictive+Tracking+for+augmented+reality&date=1995
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Bauer&aufirst=Martin&title=Proceedings+of+the+International+Symposium+on+Augmented+Reality+(ISAR)&isbn=0-7695-1375-1&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Bauer&aufirst=Martin&title=Proceedings+of+the+International+Symposium+on+Augmented+Reality+(ISAR)&isbn=0-7695-1375-1&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Bayart&aufirst=Benjamin&title=Haptics:+Perception,+Devices+and+Scenarios+Proceedings+of+EuroHaptics+2008&issn=0302-9743&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Bayart&aufirst=Benjamin&title=Haptics:+Perception,+Devices+and+Scenarios+Proceedings+of+EuroHaptics+2008&issn=0302-9743&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Bayart&aufirst=Benjamin&title=Haptics:+Perception,+Devices+and+Scenarios+Proceedings+of+EuroHaptics+2008&issn=0302-9743&date=2008

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

[DDKOS8a]

[DDKOS8Db]

[DDKOSc]

[DOMO6]

[Dou97]

[EBMO5]

ios (Proceedings of EuroHaptics 2008),
Lecture Notes in Computer Science, vol.
5024/2008, Springer Berlin / Heidelberg,
jun 2008, 1SSN 0302-9743, pp. 776-785.

Jean-Yves Didier, Bachir Djafri, and
Hanna Klaudel, The MIRELA Frame-
work: modeling and analyzing mixed re-
ality applications using timed automata,
10th Virtual Reality International Confer-
ence (Laval, France), Apr 2008, pp. 189-
199.

Jean-Yves Didier, Bachir Djafri, and
Hanna Klaudel, Modeling and analyz-
ing mixed reality applications using timed
automata, 1st Mediterranean Conference
on Intelligent Systems and Automation
(CISA’08) (Hichem Arioui, Rochdi Mer-
zouki, and Hadj A. Abbassi, eds.), AIP,
jun 2008, pp. 173-178, 1SBN 978-0-7354-
0540-0.

Jean-Yves Didier, Bachir Djafri, and
Hanna Klaudel, MIRELA: A Language

for Modeling and Analyzing Mixed Real-

ity Applications Using Timed Automata,
IEEE Virtual Reality 08 (Reno, Nevada)
(Ming Lin, Anthony Steed, and Car-
olina Cruz-Neira, eds.), IEEE, Mar 2008,
pp- 249-250, 1SBN 978-1-4244-1971-5.

Jean-Yves Didier, Samir Otmane, and
Malik Mallem, A Component Model

for Augmented/Mixed Reality Applica-

tions with Reconfigurable Data-flow, 8th
International Conference on Virtual Re-
ality (VRIC 2006) (Laval (France)), apr
2006, pp. 243-252.

Bruce Powell Douglass, Real-Time UML:
Developing Efficient Objects for Embed-
ded Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA,
1997, 1SBN 0201325799.

Christoph Endres, Andreas Butz, and Asa
MacWilliams, A Survey of Software In-

frastructures and Frameworks for Ubiqui-

tous Computing, Mobile Information Sys-
tems Journal 1 (2005), no. 1, 41-80, ISSN
1574-017X.

[Fuh99]

[Har87]

[HPSS87]

[HZHLO03]

[LPY97]

[MP92]

[OTXO03]

[PTO3]

Anton Fuhrmann, Studierstube: a Collab-
orative Virtual Environment for Scientific
Visualization, Ph.D. thesis, Institute of
Computer Graphics and Algorithms, Vi-
enna University of Technology, Favoriten-
strasse 9-11/186, A-1040 Vienna, Austria,
1999.

David Harel, Statecharts: A Visual For-
malism for Complex Systems, Science of
Computer Programming 8 (1987), no. 3,
231-274, 1SSN 0167-6423.

David Harel, Amir Pnueli, Jeanette P.
Schmidt, and Rivi Sherman, On the For-
mal Semantics of Statecharts, Proceedings
of the Second Annual IEEE Symp. on
Logic in Computer Science, LICS 1987
(David Gries, ed.), IEEE Computer Soci-
ety Press, June 1987, pp. 54-64.

Michael Haller, Jirgen Zauner, Werner
Hartmann, and Thomas Luckeneder, A
generic framework for a training applica-
tion based on Mixed Reality, Tech. report,
Upper Austria University of Applied Sci-
ences, Hagenberg, Austria, 2003.

Kim G. Larsen, Paul Pettersson, and
Wang Yi, UPPAAL in a Nutshell, Interna-
tional Journal on Software Tools for Tech-
nology Transfer (STTT) 1 (1997), no. 1-2,
134-152, 1SSN 1433-2779.

Zohar Manna and Amir Pnueli, The Tem-
poral Logic of Reactive and Concur-
rent Systems, Springer-Verlag, New York,
1992, 1SBN 0-387-97664-7.

Charles Owen, Arthur Tang, and Fan
Xiao, ImageTclAR: A Blended Script and
Compiled Code Development System for
Augmented Reality, Proceedings of the In-
ternational Workshop on Software Tech-
nology for Augmented Reality Systems,
2003.

Wayne Piekarski and Bruce H. Thomas,
An Object-Oriented Software Architecture

for 3D Mixed Reality Applications, IS-

MAR °03: Proceedings of the The 2nd
IEEE and ACM International Symposium

urn:nbn:de:0009-6-17423, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Didier&aufirst=Jean-Yves&atitle=The+MIRELA+Framework:+modeling+and+analyzing+mixed+reality+applications+using+timed+automata&title=10th+Virtual+Reality+International+Conference&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Didier&aufirst=Jean-Yves&atitle=The+MIRELA+Framework:+modeling+and+analyzing+mixed+reality+applications+using+timed+automata&title=10th+Virtual+Reality+International+Conference&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Didier&aufirst=Jean-Yves&atitle=The+MIRELA+Framework:+modeling+and+analyzing+mixed+reality+applications+using+timed+automata&title=10th+Virtual+Reality+International+Conference&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Didier&aufirst=Jean-Yves&title=1st+Mediterranean+Conference+on+Intelligent+Systems+and+Automation+CISA+08&isbn=978-0-7354-0540-0&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Didier&aufirst=Jean-Yves&title=1st+Mediterranean+Conference+on+Intelligent+Systems+and+Automation+CISA+08&isbn=978-0-7354-0540-0&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Didier&aufirst=Jean-Yves&title=1st+Mediterranean+Conference+on+Intelligent+Systems+and+Automation+CISA+08&isbn=978-0-7354-0540-0&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Didier&aufirst=Jean-Yves&title=IEEE+Virtual+Reality+08&isbn=978-1-4244-1971-5&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Didier&aufirst=Jean-Yves&title=IEEE+Virtual+Reality+08&isbn=978-1-4244-1971-5&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Didier&aufirst=Jean-Yves&title=IEEE+Virtual+Reality+08&isbn=978-1-4244-1971-5&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Didier&aufirst=Jean-Yves&atitle=A+Component+Model+for+Augmented+Mixed+Reality+Applications+with+Reconfigurable+Data-flow&title=8th+International+Conference+on+Virtual+Reality+VRIC+2006&date=2006
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Didier&aufirst=Jean-Yves&atitle=A+Component+Model+for+Augmented+Mixed+Reality+Applications+with+Reconfigurable+Data-flow&title=8th+International+Conference+on+Virtual+Reality+VRIC+2006&date=2006
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Didier&aufirst=Jean-Yves&atitle=A+Component+Model+for+Augmented+Mixed+Reality+Applications+with+Reconfigurable+Data-flow&title=8th+International+Conference+on+Virtual+Reality+VRIC+2006&date=2006
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Douglass&aufirst=Bruce&title=&isbn=0201325799&date=1997
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Douglass&aufirst=Bruce&title=&isbn=0201325799&date=1997
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Douglass&aufirst=Bruce&title=&isbn=0201325799&date=1997
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Endres&aufirst=Christoph&title=&atitle=A+Survey+of+Software+Infrastructures+and+Frameworks+for+Ubiquitous+Computing&issn=1574-017X&date=2005&volume=1&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Endres&aufirst=Christoph&title=&atitle=A+Survey+of+Software+Infrastructures+and+Frameworks+for+Ubiquitous+Computing&issn=1574-017X&date=2005&volume=1&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Endres&aufirst=Christoph&title=&atitle=A+Survey+of+Software+Infrastructures+and+Frameworks+for+Ubiquitous+Computing&issn=1574-017X&date=2005&volume=1&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Fuhrmann&aufirst=Anton&title=&atitle=Studierstube:+a+Collaborative+Virtual+Environment+for+Scientific+Visualization&date=1999
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Fuhrmann&aufirst=Anton&title=&atitle=Studierstube:+a+Collaborative+Virtual+Environment+for+Scientific+Visualization&date=1999
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Fuhrmann&aufirst=Anton&title=&atitle=Studierstube:+a+Collaborative+Virtual+Environment+for+Scientific+Visualization&date=1999
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Harel&aufirst=David&title=&atitle=Statecharts:+A+Visual+Formalism+for+Complex+Systems&issn=0167-6423&date=1987&volume=8&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Harel&aufirst=David&title=&atitle=Statecharts:+A+Visual+Formalism+for+Complex+Systems&issn=0167-6423&date=1987&volume=8&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Harel&aufirst=David&title=Proceedings+of+the+Second+Annual+IEEE+Symp.+on+Logic+in+Computer+Science,+LICS+1987&date=1987
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Harel&aufirst=David&title=Proceedings+of+the+Second+Annual+IEEE+Symp.+on+Logic+in+Computer+Science,+LICS+1987&date=1987
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Haller&aufirst=Michael&title=&atitle=A+generic+framework+for+a+training+application+based+on+Mixed+Reality&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Haller&aufirst=Michael&title=&atitle=A+generic+framework+for+a+training+application+based+on+Mixed+Reality&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Haller&aufirst=Michael&title=&atitle=A+generic+framework+for+a+training+application+based+on+Mixed+Reality&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Larsen&aufirst=Kim&title=&atitle=Uppaal+in+a+Nutshell&issn=1433-2779&date=1997&number=1-2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Manna&aufirst=Zohar&title=&isbn=0-387-97664-7&date=1992
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Manna&aufirst=Zohar&title=&isbn=0-387-97664-7&date=1992
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Manna&aufirst=Zohar&title=&isbn=0-387-97664-7&date=1992
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Owen&aufirst=Charles&title=Proceedings+of+the+International+Workshop+on+Software+Technology+for+Augmented+Reality+Systems&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Owen&aufirst=Charles&title=Proceedings+of+the+International+Workshop+on+Software+Technology+for+Augmented+Reality+Systems&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Owen&aufirst=Charles&title=Proceedings+of+the+International+Workshop+on+Software+Technology+for+Augmented+Reality+Systems&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Piekarski&aufirst=Wayne&title=ISMAR+03+Proceedings+of+the+The+2nd+IEEE+and+ACM+International+Symposium+on+Mixed+and+Augmented+Reality&isbn=0-7695-2006-5&date=2003
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Piekarski&aufirst=Wayne&title=ISMAR+03+Proceedings+of+the+The+2nd+IEEE+and+ACM+International+Symposium+on+Mixed+and+Augmented+Reality&isbn=0-7695-2006-5&date=2003

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

on Mixed and Augmented Reality (Wash-
ington, DC, USA), IEEE Computer Soci-
ety, 2003, p. 247, 1SBN 0-7695-2006-5.

[Rei85] Wolfgang Reisig, Petri Nets: An Intro-
duction, Monographs in Theoretical Com-
puter Science. An EATCS Series, vol. 4,
Springer, 1985, 1ISBN 0-387-13723-8.

[RSO1] Gerhard Reitmayr and Dieter Schmal-
stieg, OpenTracker-An Open Software Ar-
chitecture for Reconfigurable Tracking
based on XML, VR ’01: Proceedings
of the Virtual Reality 2001 Conference
(VR’01) (Washington, DC, USA), IEEE
Computer Society, 2001, p. 285, ISBN 0-
7695-0948-7.

Citation

Jean-Yves Didier, Bachir Djafri and Hanna Klaudel
The MIRELA framework: modeling and analyzing
mixed reality applications using timed automata
Journal of Virtual Reality and Broadcasting,
6(2009), no. 1, February 2009, urn:nbn:de:
0009-6-17423, ISSN 1860-2037.

urn:nbn:de:0009-6-17423, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Reisig&aufirst=Wolfgang&title=&isbn=0-387-13723-8&date=1985
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Reisig&aufirst=Wolfgang&title=&isbn=0-387-13723-8&date=1985
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Reitmayr&aufirst=Gerhard&title=Proceedings+of+the+Virtual+Reality+2001+Conference+VR+01&isbn=0-7695-0948-7&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Reitmayr&aufirst=Gerhard&title=Proceedings+of+the+Virtual+Reality+2001+Conference+VR+01&isbn=0-7695-0948-7&date=2001
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Reitmayr&aufirst=Gerhard&title=Proceedings+of+the+Virtual+Reality+2001+Conference+VR+01&isbn=0-7695-0948-7&date=2001

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

A Timed automata modeling MiReLa components
A.1 Main components

A.1.1 Processing units and input managers

clk>=tprocessing_min[i] &&
clk < tprocessing_max]i]

free_processing][i]!

A Pr ingIinProgr:
O work_processing][i]? SEesaIng QILESS
elies0 clk <= tprocessing_max[i]
clk>=tprocessing_max]i]
error_processing[i]!
Figure 14: Processing Unit
error_processing[i]? nb!=nb_output_processing[i]
free_processing[i]? output_processing([il[nb]!

input_processing][i][0]? =Y work_processing[i]! nb:=0 nb:=nb+1
- 5 4 Y Y ¢
L ProcessinginProgress End

nb==nb_output_processing[i]

Figure 15: Unary input manager

error_processing[i]? nb==nb_output_processing[i]

input_processing][i][0]?

input_processing][i][1]? work_processing([i]! free_processing[i]? \Efrli output_processing][i][nb]!
A nb:=0 nb:=nb-+1

Entry Start ProcessinglnProgress

Exit

nb!=nb_output_processing[i]

Figure 16: AtLeast input manager

error_processing[i]?

Buffer2 input_processing[i][0]?
\/-\

input_processing[i][0]?

i inglil[11?
input_processingfil[1]? input_processing[i][1]?

nb:=0 End
Entr input_processing[i][1]? N input_processing[i][0]? /\CJ work_processing[i]! N free_processing[i]?
y Buffer1 Input ProcessingInProgress

nb!=nb_output_processing[i]

nb==nb_output_processing[i] Exit/R/ output_processing[il[nb]!
- nb=nb+1

Figure 17: Both input manager

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

input_processing[i][1]?

Start ProcessingInProgress End
f e P _r .
BufferWnpuLprocesmng[|][O] ? fé\ ™ free_processing[i] Y output_processing][i][nb]!

N\ - nb:=0 nb:=nb+1 . c
input_processingfil[1]? Tworkprocessmg[l]! Exit

input_processing[i][0]? nb!=nb_output_processing[i]

error_processing[i]?

nb==nb_output_processing[i]

Figure 18: Priority input manager

A.1.2 Other components

pauseli]? resumel[i]?

EventProcessinginProgress

Suspend1 pause[i]? Init started[i]! event]i]! Y pauseli]?

h:=0

Active Suspend3
resumel[i]?

h>tmin_shut_sensorfi] resumel[i]?

stopped]i]!

Figure 19: Aperiodic sensor

)) . clock2 >= read_tmin[i] and
clock2 >=time_processing_rendering([i] ~ clock? <read_tmax(i]

i unlock[il!
EndProcessing /\/ _
clocki<=time_rendering]i] EndReading

clock1 > time_rendering[i]

clock1:=0 clock1:=0
unlock(i]!
OnStandby clock1 > time_rendering[i]
@ clock1:=0
clock1:=0
lock([i]! clock2:=0

clock1 <= time_rendering]i] clocki<time_rendering[i]

~ Init Rea din}
clock2 <= read_tmax[i]

clock2 == read_tmax[i] and
clock1 <= time_rendering][i]
clock1== time_rendering[i] unlock([i]!

Figure 20: Rendering loop

OnStandby i Reinit
O start[itmp]!
OnStandby . Locked)
lock[i]? %id_sensor stopfitmp]! OnStandby
unlock[i]? error_sensor[i]? ¢ : startfi]! :
itmp:=i Sensor globalStart:=0
Figure 21: Memory register Figure 22: Error management Figure 23: Initialization

urn:nbn:de:0009-6-17423, ISSN 1860-2037

Journal of Virtual Reality and Broadcasting, Volume 6(2009), no. 1

A.2 Controllers

I>=nb_output_sensorfi]

eventfi]?
I:=0 ReceiveChanging NewEntry Choice
()

O get_datali]? c u:=connexionchPU[i][I][Of\/ input_processing[u][v]! c

OnStandby 1:=0 v:=connexionsCcPU[I][I][1] J:=l+1

l<nb_output_sensorfi]

Figure 24: Collector controller

PU_in=connexionsPUPUI[i][2],
idx_in=connexionsPUPUI[i][3],
PU_out = connexionsPUPUIi][0],
idx_out = connexionsPUPUIi][1]

Inactive input_processing[PU_in][idx_in]!

i i 9
output_processing[PU_out][idx_out]? Active

Figure 25: Processing controller

AfterPause Inactive BeforeResume
©

O-
cnt:=cnt+1 | fent:=0 & cnt==Sn
started[groupControl[i][0]]?

Active

groupControl[i][1]==group[cnt] cnt!=Sn

pausefcnt]! groupControl[i][1]!=group[cnt]

groupControl[i][1]!=group[cnt]

stopped[groupControl[i][0]]?
cnt!=Sn cnt==Sn ey cnt:=0

resume(cnt]!
groupControl[i][1]==group[cnt]

cnt:=cnt+1

-
BeforePause ReadyToStop Stopped Resumed

Figure 26: Group controller

j:id_outputprocessing
tab_output_processing[i][j]?

topped Control[i][0]]?
stppstigronpe et ? y:=fun_id_input_mem(i,j)

started[groupControl[i][0]]?
é}

Figure 27: Void group controller

clk<= write_tmax[i]

unlockly]!

Inactive clk >= write_tmin[i] clk:=0

Figure 28: Memory controller

urn:nbn:de:0009-6-17423, ISSN 1860-2037

	Introduction
	Related works
	The MIRELA framework overview
	An overview
	A data flow-oriented software architecture and the MIRELA syntax
	Main components
	Sensors
	Processing units
	Shared memory and rendering loops
	Controllers

	Timed automata modeling of MIRELA specifications
	Timed automata
	Timed automata for MIRELA specifications

	Model-checking and simulation
	Rapid prototyping
	A case study
	Conclusion and perspectives
	Timed automata modeling MiReLa components
	Main components
	Processing units and input managers
	Other components
	Controllers

