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Abstract

Physically-based modeling for computer animation al-
lows to produce more realistic motions in less time
without requiring the expertise of skilled animators.
But, a computer animation is not only a numerical
simulation based on classical mechanics since it fol-
lows a precise story-line. One common way to define
aims in an animation is to add geometric constraints.
There are several methods to manage these constraints
within a physically-based framework. In this paper,
we present an algorithm for constraints handling based
on Lagrange multipliers. After few remarks on the
equations of motion that we use, we present a first al-
gorithm proposed by Platt. We show with a simple
example that this method is not reliable. Our contri-
bution consists in improving this algorithm to provide
an efficient and robust method to handle simultaneous
active constraints.

Keywords: Physically-based animation, constraints,
contact simulation

Digital Peer Publishing Licence
Any party may pass on this Work by electronic
means and make it available for download under
the terms and conditions of the current version
of the Digital Peer Publishing Licence (DPPL).
The text of the licence may be accessed and
retrieved via Internet at
http://www.dipp.nrw.de/.

First presented at the First International Conference
on Computer Graphics Theory and Applications
(GRAPP 2007), extended and revised for JVRB

1 Introduction

For about two decades, the computer graphics com-
munity has investigated the field of physics in order
to produce more and more realistic computer anima-
tions. In fact, physically-based modeling in animation
allows to generate stunning visual effects that would
be extremely complex to reproduce manually. On one
hand, the addition of physical properties to 3D objects
automates the generation of motion just by specifying
initial external forces. On the other hand, physically-
based animations are even more realistic than tradi-
tional key-framed animations that require the exper-
tise of many skilled animators. As a consequence,
the introduction of physically-based methods in mod-
eling and animation significantly reduced the cost and
production time of computer generated movies. But,
one main drawback of this kind of framework is that
it relies on heavy mathematics usually hard to tackle
for a computer scientist. A second main disadvantage
concerns the input of a physically-based animation:
in fact, forces and torques are not really user-friendly
since it is really difficult to anticipate a complex mo-
tion just by specifying an initial set of external forces.

A computer animation is definitely not a numeri-
cal simulation because it follows a story-line. Accord-
ing to Demetri Terzopoulos [TPBT89], an animation
is simulation plus control. One way to ensure that the
objects fulfill the goals defined by the animator is to
use geometric constraints. A constraint is an equality
or an inequality that gathers different parameters of the
animation like the total time elapsed, the positions or
the orientations of the moving objects. In a less gen-
eral way, mechanical simulations also benefit from the
use of constraints in order to prevent interpenetration
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between physical objects for example.

There are several methods to handle constraints,
summarized in a survey paper by Baraff [Bar93|]. But,
since our research work is mostly devoted to mechan-
ical simulation, we decided to focus on the use of La-
grange multipliers to manage geometric constraints.
In fact, numerical simulations require robust and reli-
able techniques to ensure that the constraints are never
violated. Moreover, with this method we are also able
to measure the amount of strain that is necessary to ful-
fill a given constraint. In this paper, we present a novel
algorithm to manage efficiently several simultaneous
active geometric constraints. We begin by detailing
the physical equations that we use before presenting
Platt’s algorithm [Pla92] that is the only algorithm of
this type based on Lagrange multipliers. With a sim-
ple example, we demonstrate that this algorithm is not
suitable for handling simultaneous active constraints.
We then introduce our own contribution in order to
show how to improve Platt’s algorithm to make it reli-
able, robust and efficient.

2 Lagrange equations of motion

Lagragian dynamics consist in an extension of newto-
nian dynamics allowing to generate a wide range of
animations in a more efficient way. In fact, Lagrange
equations of motion rely on a set of unknowns, de-
noted as a state vector x of generalized coordinates,
that identifies the real degrees of freedom (DOF) of the
mechanical systems involved. Within this formalism,
the DOF are not only restricted to rotations or trans-
lations. For example, a parameter u € [0, 1] which
gives the relative position of a point along a 3D para-
metric curve can be considered as a single generalized
coordinate.

2.1 Unconstrained motion

The evolution of a free mechanical system only sub-
ject to a set of external forces is ruled by the Lagrange
equations of motion (T).

Mx=f ey

M is the mass matrix. X is the second time deriva-
tive of the state vector. Finally, the vector f corre-
sponds to the sum of external forces. For more details
concerning this formalism, we suggest to read [[Gol80]
and [Arn&9|.

2.2 Constrained motion

By convention, an equality constraint will always be
defined as in equation (2)) where £ is the set of indices
of all the equality constraints.

g(x)=0 Vke& )

Constraints restrict the set of reachable configura-
tions to a subspace of R™ where n is the total num-
ber of degrees of freedom. As mentioned before, there
exists three main methods to integrate constraints in

equation ()

The projection method consists in modifying the
state vector x and its first time derivative x in or-
der to fulfill the constraint. This modification can
be performed with an iterative method like the
Newton-Raphson method [VE02]]. Even if this
method is very simple and seems to ensure an in-
stantaneous constraint fulfillment, it is not robust
enough: indeed it can not guarantee that the pro-
cess converges in the case of simultaneous active
constraints.

The penalty method adds new external forces, act-
ing like virtual springs, in order to minimize the
square of the constraint equation, considered as a
positive energy function. The main advantage of
this method is its compatibility with any dynamic
engine since it only relies on forces. But this
method leads to inexact constraint fulfillment, al-
lowing interpenetration between the physical ob-
jects. In order to diminish this interpenetration,
the stiffness of the virtual springs must be signif-
icantly increased, making the numerical system
unstable.

The Lagrange method consists in calculating the ex-
act amount of strain, denoted as the Lagrange
multiplier, needed to fulfill the constraint. This
method guarantees that constraints are always ex-
actly fulfilled. Since the use of Lagrange multi-
pliers introduces a set of new unknowns, equation
must be completed by a set of new equations,
increasing the size of the initial linear system to
solve. But we consider that this method is most
suitable for efficiently managing geometric con-
straints.

For all the reasons mentioned above, we chose
the Lagrange method to manage our geometric con-
straints. According to the principle of virtual work,
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each constraint g adds a new force perpendicular to
the tangent space of the surface gi(x) = 0. The La-
grange multiplier A\ corresponds to the intensity of
the force related to the constraint g;. With these new
forces, equation (I)) is modified as follows:

M)‘i:f+2)\kaag)f (3)

ke&

We add new equations to our system by calculating
the second time derivative of equation (2), leading to

equation ().

D% gy,
00z,

-3

)j_

Z g:f’c’j Tk g VkeEE (4)

In order to correct the numerical deviation due to
round-off errors, Baumgarte proposed in [Bau72[] a
constraint stabilization scheme illustrated by equation
. The parameter 7! can be seen as the speed of
constraint fulfillment.

3gk B ~ Pg . .
Z 8302 B Z_: O0x;0x; Tit
N )
25009k, 1
T al’l ‘ QQk

When we mix equations (I) and (5)), we obtain a
linear system where the second time derivative of the
state vector x and the vector of Lagrange multipliers

A are the unknowns.
x| f
Al | —d

J is the jacobian matrix of all the geometric con-
straints and d corresponds to the right term of equation

@)

T
[M J ©)

-J 0

2.3 Inequality constraints management

By convention, an inequality constraint will always be
defined as in equation (/) where F is the set of indices
of all the inequality constraints.

gr(x) >0 Vk e F (7

For a given state vector x, we recall the following
definitions:

e the constraint is said to be violated by x when
gr(x) < 0. This means that the state vector x
corresponds to a non allowed configuration.

e the constraint is said to be satisfied by x when
gk(x) = 0.

e the constraint is said to be active when gi(x) =
0. In this case, the state vector x belongs to the
boundary of the subspace defined by the inequal-
ity constraint gy.

The management of inequality constraints is more
difficult than the management of equality constraints.
An inequality constraint must be handled only if it is
violated or active. In fact, the algorithm is a little more
complicated as we explain in the next sections.

That is why we define two subsets within F: F7 is
the set of indices of all handled inequality constraints
and F~ is the set of indices of ignored inequality con-
straints. Finally, we have 7 = F~UJF . The jacobian
matrix of constraints J of equation (6) is built from all
the constraints g, where k € £ U F+.

3 Previous work

Within the computer graphics community, the main
published method devoted to inequality constraints
management using Lagrange multipliers, known as
“Generalized Dynamic Constraints”, was proposed by
Platt in [Pla92]. In his paper, he describes how to use
Lagrange multipliers to assemble and simulate colli-
sions between numerical models. This method is an
extension of the work of Barzel and Barr [BB&8|| that
specifies how constraints must be satisfied. Moreover,
Platt proposes a method to update F* (the set of han-
dled inequality constraints) during the animation. This
algorithm can be compared to classical active set meth-
ods [Bj696, NWOQ].

We do not focus on collision detection that is a prob-
lem by itself. We are aware that this difficult prob-
lem can be solved in many ways, we encourage the
reader to refer to the survey paper by Teschner et al.
[TKZ"05)]. During the collision detection stage, we
assume that the dynamic engine may rewind time until
the first constraint activation is detected. This assump-
tion can produce an important computational overhead
that can restrict our method to off-line animations pro-
duction depending on the complexity of the scene sim-
ulated. In any case, this stage ensures that constraints

urn:nbn:de:0009-6-12767, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 4(2007), no. 15

are never violated. But, it is possible that several con-
straints are activated simultaneously. The main topic
of this paper is to provide a reliable algorithm to han-
dle these multiple active constraints in an efficient way.

At the beginning of the animation, Platt populates
the set 7+ with all the active constraints.

Algorithm 1- Platt’s algorithm

1 Solve equation @ to get X and A

2 Update x and x (numerical integration)
3 for each k € F do

4 | ifk e F' then

5 if A\, < 0 then

6

L k is moved to F—

else
if g;(x) < 0 then
L gr. is moved to F+

For each time step, according to algorithm [} we
solve equation (6) and update the state vector in or-
der to retrieve new positions and velocities at the end
of the current time step. We then check the status of
each inequality constraint. If a constraint gy, is active,
it is still handled until its Lagrange multiplier is nega-
tive or null, that is to say that the Lagrange multiplier
corresponds to a force that prevents from deactivation.
According to the new values of the state vector x, if
the previously inactive constraint g is now violated
(gr(x) < 0), the constraint must be added to F7 in
order to prevent the system to enter in such a configu-
ration.

S~ .

Figure 1: A simple example with two simultaneous
active constraints

Even if this algorithm seems to give a reliable so-
lution for inequality constraints handling, some prob-

lems remain. We set up a simple scene as in figure[I]to
illustrate the insufficiencies of Platt’s method. A par-
ticle of mass m is constrained to slide on a 2D plane.
It starts from an acute-angle corner modeled by two
linear inequality constraints g; (x) > 0 and g2(x) > 0
where g1 (x) = x — y and g2(x) = y. Finally, this par-
ticle is subject to a single external force f = (2, —1).
In this particular case, the state vector x is composed
of the 2D coordinates (z, y) of the particle. According
to equation (I), the generalized mass matrix for this
system is defined by:

®)

o[ 2

0 m
As the geometric constraints g;(x) and go(x) are

linear, their first and second time derivative do not pro-
duce any deviation term defined in equation (3)):

o [1

According to the initial value of the state vector x =
(0,0), the two constraints g; (x) and ga(x) are active,
so their indices are inserted in 7 and J, the jacobian
matrix of constraints, is defined as follows:

1 -1
=Lo 7]
From equations (6) (8) (9) and (I0), we obtain a
linear system whose unknowns are the second time

derivative of the state vector x and the two Lagrange
multipliers A\; and Ay associated with g; and go:

)

(10)

m 0 -1 0 i 2
0 m 1 -1 gl | -1
-1 1 0 0 N7 o | 4D
0 -1 0 0 Ao 0

The solutions are X = (0,0) and A = (—2,—1).
The particle does not move during this time step be-
cause & and § are null. But, since A\; and Ao are both
negative, their corresponding constraints are moved to
JF~. This means that, for the next time step, the sys-
tem will be free of any constraints. As the force re-
mains constant, the next value of X will be equal to
(2m~!, —m™1). These values will lead to an illegal
position of the particle, under the line y = 0. These
computations are illustrated by the figure [2]

The amount of violation of the constraint g2(x) = y
mainly depends on the ratio between the mass m of
the particle and the intensity of the external force f.
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Section [3] of this paper presents the different results
and comparisons.

4 Our contribution

4.1 A first approach

The problem of Platt’s method relies on the fact that it
keeps some inequality constraints in 7 that should be
ignored. In fact, the condition gx(x) < 0 used to pop-
ulate 7+ with inequality constraints is not well suited
and an alternative approach is proposed. A solution
would be to replace the condition g(x) < 0 by a vio-
lation tendency condition expressed as JyX < di. An
active constraint that does not fulfill the violation ten-
dency condition will be satisfied but inactive during
the next time step and does not have to be handled.

At the beginning of the animation, we solve equa-
tion (1)) to get X and we then populate the set F* with
the active constraints that fulfill the violation tendency
condition. It is clear that we handle less constraints
than Platt because our criteria is more restrictive.

We briefly verify that this algorithm gives a correct
solution to our example illustrated in figure[I] Accord-
ing to equation (1), X = (2m~!,—m™!). The two
constraints g; and g2 are active because x = (0,0)
but only g fulfills the violation tendency condition as
mentioned in equation (12)).

Jlii:3m_1 = 1leF~

(12)

Algorithm 2— Platt’s improved algorithm

1 Solve equation @) to get X and A
2 Update x and x (numerical integration)
3 for each k € F do

4 if k € F7 then

5 if A\, <0 then

6 L k is moved to F~

7 else
if Jp.X < dj, then
L k is moved to FT

m 0 0 i 2
0 m -1 i |l=1-1 (13)
0 -1 0 Ao 0

The solutions of the linear system (13) are X =
(2m~1,0) and Ay = 1. Finally, the particle will slide
along the x-axis without crossing the line y = 0 be-
cause the constraint g; that was not handled did not
introduce a false response.

This new algorithm seems to manage multiple in-
equality constraints in a good way, but we could high-
light a problem with this method by using the same ex-
ample illustrated in figure |1| with a new external force
f=(-1,-2).

At the beginning, since x = (0, 0), the constraints
g1 and g5 are active. From equation (), we obtain that
% = (—m~!,—2m™1), and from equation that
only the constraint g, is handled.

Jok = —m™t = 2eF*
Jix=m! = 1cF~ 14
In this special case, equation (6) becomes: Jox=—-2m1 = 2¢F*T (19
x—y=0
Zi

(a)

(b)

Figure 2: (a) Since the two constraints are active, they handle by Platt’s algorithm (b) The related Lagrange
multipliers are negative, the constraints are then ignored (c) The new unconstrained acceleration leads to an

illegal position
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According to equation (14)), we build the linear sys-

tem (13).

m 0 0 T -1
0 m -1 g | =1 -2 (15)
0 -1 0 Ao 0

The solutions are ¥ = (—m~1,0) and Ao = 2. Af-
ter the update of x and X%, the particle slides through
the plane defined by the constraint g; and reaches an
illegal state. This is due to the fact that the Lagrange
multiplier A2 pushes the system in an illegal state ac-
cording to the constraint g;, which was not previously
inserted in equation (6)) as it did not satisfy the viola-
tion tendency criterion. These computations are again
illustrated by the figure

4.2 The “right” algorithm

The use of the violation tendency condition JipX <
dj, improves simultaneous active constraints manage-
ment, since only the appropriate inequality constraints
are handled by equation (6). But we have seen, from
the second example, that it is not sufficient to pro-
duce a consistent configuration. In fact, the constraints
from F that fulfill the violation tendency condition
will produce a vector A of Lagrange multipliers that
prevent the system from being in an illegal configu-
ration according to these handled constraints. In the
meantime, the constrained accelerations X of the sys-
tem could lead to an illegal configuration according to
some constraints in 7. The only way to deal with
this problem is to use the newly computed constrained
accelerations to test if the active inequality constraints

gr (where k € F ) fulfill the violation tendency con-
dition and have to be handled. We then need to in-
troduce an iterative process that computes the acceler-
ations and checks if a previously ignored constrained
must be handled or not according to the violation ten-
dency condition evaluated with the newly computed
constrained accelerations. This process is repeated un-
til the sytem reaches the appropriate state.

We propose a simple and efficient solution to the
inequality constraints handling problem. At the be-
ginning of each time step, all active inequality con-
straints gy, are detected, and F 7 is emptied. We then
begin an iterative process that runs until there is no
new insertion in F . The constrained accelerations
¥ are computed from equation (6) and the violation
tendency condition JyX < dj, is tested on each active
inequality constraint. For any inequality constraint gy,
that fulfills the condition, we insert its index k in F+
and start another iterative step.

Algorithm 3— The right algorithm

1 repeat

2 Solve equation @ to get X and A
3 for each active constraint g;, do
4 if JpX < dj, then

5 L L k is moved to F T

6 until 7 has not been updated,
7 Update x and X (numerical integration)

Since we begin with no constraints and that only ap-
propriate inequality constraints are inserted to 7+ dur-
ing the iterative process, the last computation of X and
A from equation (6)) will lead to an accurate configura-
tion of the system. Moreover, this process guarantees

y=0 / R

y=0

(a)

(b)

(©

Figure 3: (a) The two constraints are handled since they are active (b) According to the violation tendency
condition, only the constraint g still handled (c¢) The newly computed constrained acceleration leads to an

illegal position
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the convergence towards a consistent configuration as
we begin from an empty F* and only add new con-
straint indices in F .

In a recent communication [REO6], Raghupathi pre-
sented a method also based on Lagrange multipliers.
For realtime considerations, they do not allow the dy-
namic engine to rewind time to get back to the first
constraint activation. They have to manage constraints
at the end of the time step, trying to find the right accel-
erations to ensure constraints fulfillement. They also
confess that this process is not guaranteed to converge
for a given situation.

5 Results and Comparisons

We will now compare the results obtained with Platt’s
algorithm and our method, using the example illus-
trated in figure [T} Figure ] and [5]illustrate a compari-

Platt's algorithﬁ1 ——
Our algorithm —=—

2e-06

-2e-06

-4e-06

position

-6e-06

-8e-06

-le-05

-1.2e-05 )

0 0.005 0.01

time

0.015 0.02

son of the positions and accelerations along y-axis of
a particle of mass m = 2 and m = 3. We recall that
the inequality constraint go forbids negative values for
y and that the constant force f applied to the particle is
equal to (2, —1).

As shown on figure 4] Platt’s algorithm holds the
particle in the corner at the first time step, and releases
it at the next time step. As a consequence, the particle
evolves in an illegal state during the following steps.
With a mass m = 2, the error related to the position
is less than 10~ with an oscillating acceleration (right
column). But if we set the mass m to 3, as shown in the
figure 5 errors are much more important, and the par-
ticle crosses the line ¥y = 0 modeled by the constraint

g2-
As illustated, our algorithm keeps the particle along

the z-axis within a controlled numerical error value,
that is less than 1078 in these examples.

10 ‘ ‘
Platt's algorithm ——
Our algorithm —=—

LA L

acceleration

-10 + E

0 0.005 0.01 0.015
time

0.02

Figure 4: Comparison of Platt’s algorithm and our method using the example illustrated in figure|l{ with a mass
m = 2. The numerical values correspond respectively to position and acceleration along the y-axis

Platt's algorithfn —— ]

.0002
0.000 Our algorithm —=—

0 5 e e o o o 6659 o oo
-0.0002

-0.0004

position

-0.0006

-0.0008

-0.001

-0.0012 :

0 0.005 0.01

time

0.015 0.02

"Platt's algorifhm —— ]
Our algorithm —s—

Ok o et oo oo o6 o8 oo o o s o o i

acceleration

0.015

0.01

time

0 0.005 0.02

Figure 5: Comparison of Platt’s algorithm and our method using the example illustrated in figure[T] with a mass
m = 3. The numerical values correspond respectively to position and acceleration along the y-axis
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To illustrate multiple contact constraints, we have
set a billiard scene composed of 10 fixed balls placed
in a corner and a moving ball that slides towards them.
For each ball, we define two inequality constraints ac-
cording to the corner and one inequality constraint for
each pair of balls based on their in-between distance.
This example is finally composed of 11 balls and 77
inequality constraints (figure [6).

It is rather difficult to compare the computation
times of Platt’s algorithm and ours since the simula-
tions made of simultaneous active constraints are not
well handled by Platt’s algorithm and produce cor-
rupted numerical values that can lead to infinite loops.
But it is quite clear that in the worst case, our method
may solve n linear systems of increasing size where
n is the total number of inequality constraints. The
complexity of our solution is then higher than Platt’s
algorithm. But we recall that our main contribution is
not to speed up an existing method but to propose a
reliable algorithm mainly dedicated to off-line simula-
tions.

6 Conclusion

In this paper, we presented a novel algorithm to
manage simultaneous active inequality constraints.
Among all the existing methods to handle constraints
within a physically-based animation, we focused on
the Lagrange method which provides a reliable way
to ensure that constraints are always exactly fulfilled.
But, in the special case of several active inequality
constraints, we have to take care on how to handle
these simultaneous constraints. Platt proposed an al-
gorithm based on Lagrange multipliers but we showed
that this method is unable to solve even simple exam-
ples. We then explained how to improve this algorithm
in order to propose a new reliable and efficient method
for inequality constraints handling. Beyond the exam-
ple illustrated in figure |1} we produced a short movie
simulating a billiard game. Some snapshots are gath-
ered in figure[6]

References

[Arn89]  Vladimir I. Arnold, Mathematical Meth-
ods of Classical Mechanics, ond ed,
Graduate Texts in Mathematics, vol. 60,
Springer Verlag, New York, 1989, 1SBN 0-

387-96890-3.

[Bar93]

[Bau72]

[BB88]

[Bj596]

[Gol80]

[NWO0]

[Pla92]

[RFO06]

[TKZ105]

formable Objects,

David Baraff, Non-penetrating rigid body
simulation, State of the Art Reports, Euro-
graphics *93, September 1993.

J. Baumgarte, Stabilization of constraints
and integrals of motion in dynamical sys-
tems, Computer Methods in Applied Me-
chanics and Engineering 1 (1972), 1-16,
ISSN 0045-7825.

Ronen Barzel and Alan H. Barr, |A model-
ing system based on dynamic constraints,
SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics
and interactive techniques (New York, NY,
USA), ACM Press, 1988, 1SBN 0-89791-
275-6, pp. 179-188.

Ake Bjorck, Numerical Methods for Least
Squares Problems, SIAM, Philadelphia,
Penn., 1996, 1SBN 0-89871-360-9.

Herbert Goldstein, |Classical Mechanics),
ond e Addison—Wesley, Reading, MA,
U.S.A., 1980, 1ISBN 0-321-18897-7.

Jorge Nocedal and Stephen J. Wright,
Numerical Optimization, Springer, New
York, 2000, ISBN 0-387-98793-2.

John C. Platt, A Generalization of Dy-
namic Constraints, CVGIP: Graphical
Models and Image Processing 54 (1992),
no. 6, 516-525, 1SSN 1049-9652.

Laks Raghupathi and Francois Faure, |QP-
Collide: A New Approach to Collision
Treatment, Journées du groupe de travail
Animation et Simulation (GTAS), Annual
French Working group on Animation and
Simulation, Institut de Recherche en Infor-
matique de Toulouse, June 2006, pp. 91—
101.

Matthias Teschner, Stefan Kimmerle,
Gabriel Zachmann, Bruno Heidelberger,
Laks Raghupathi, Anton L. Fuhrmann,
Marie-Paule Cani, Francois Faure, Na-
dia Magnetat-Thalmann, and Wolfgang
Strasser, Collision Detection for De-
vol. 24, Computer
Graphics Forum, no. 1, March 2005, ISSN
0167-7055, pp. 61-81.

urn:nbn:de:0009-6-12767, ISSN 1860-2037


http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Arnold&aufirst=Vladimir+&isbn=0-387-96890-3&date=1989&volume=60
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Arnold&aufirst=Vladimir+&isbn=0-387-96890-3&date=1989&volume=60
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baraff&aufirst=David&title=+State+of+the+Art+Reports+Eurographics+&atitle=Non-penetrating+rigid+body+simulation&date=1993
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baraff&aufirst=David&title=+State+of+the+Art+Reports+Eurographics+&atitle=Non-penetrating+rigid+body+simulation&date=1993
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baumgarte&auinit=J.&title=Computer+Methods+in+Applied+Mechanics+and+Engineering&atitle=Stabilization+of+constraints+and+integrals+of+motion+in+dynamical+systems&issn=0045-7825&date=1972&volume=1&pages=1-16
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baumgarte&auinit=J.&title=Computer+Methods+in+Applied+Mechanics+and+Engineering&atitle=Stabilization+of+constraints+and+integrals+of+motion+in+dynamical+systems&issn=0045-7825&date=1972&volume=1&pages=1-16
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Baumgarte&auinit=J.&title=Computer+Methods+in+Applied+Mechanics+and+Engineering&atitle=Stabilization+of+constraints+and+integrals+of+motion+in+dynamical+systems&issn=0045-7825&date=1972&volume=1&pages=1-16
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Barzel+&aufirst=Ronen&title=+SIGGRAPH+A+Proceedings+of+the+15th+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-89791-275-6&date=1988&pages=179-188
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Barzel+&aufirst=Ronen&title=+SIGGRAPH+A+Proceedings+of+the+15th+annual+conference+on+Computer+graphics+and+interactive+techniques&isbn=0-89791-275-6&date=1988&pages=179-188
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Aake&aufirst=Bjoerck&title=Numerical+Methods+for+Least+Squares+Problems&isbn=0-89871-360-9&date=1996
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Aake&aufirst=Bjoerck&title=Numerical+Methods+for+Least+Squares+Problems&isbn=0-89871-360-9&date=1996
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Goldstein&aufirst=Herbert&title=Classical+Mechanics&isbn=0-321-18897-7&date=1980
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Nocedal&aufirst=Jorge&title=Numerical+Optimization&isbn=0-387-98793-2&date=2000
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Platt&aufirst=John&title=+CVGIP+Graphical+Models+and+Image+Processing&atitle=A+Generalization+of+Dynamic+Constraints&issn=1049-9652&date=1992&volume=54&issue=6&pages=516-525
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Platt&aufirst=John&title=+CVGIP+Graphical+Models+and+Image+Processing&atitle=A+Generalization+of+Dynamic+Constraints&issn=1049-9652&date=1992&volume=54&issue=6&pages=516-525
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Raghupathi&aufirst=Laks++&title=+Journees+du+groupe+de+travail+Animation+et+Simulation+GTAS&atitle=QP-Collide+A+New+Approach+to+Collision+Treatment&date=2006&pages=91-101
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Raghupathi&aufirst=Laks++&title=+Journees+du+groupe+de+travail+Animation+et+Simulation+GTAS&atitle=QP-Collide+A+New+Approach+to+Collision+Treatment&date=2006&pages=91-101
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Raghupathi&aufirst=Laks++&title=+Journees+du+groupe+de+travail+Animation+et+Simulation+GTAS&atitle=QP-Collide+A+New+Approach+to+Collision+Treatment&date=2006&pages=91-101
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Teschner&aufirst=Matthias&title=+Computer+Graphics+Forum&atitle=Collision+Detection+for+Deformable+Objects&issn=0167-7055&date=2005&volume=24&issue=1&pages=61-81
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Teschner&aufirst=Matthias&title=+Computer+Graphics+Forum&atitle=Collision+Detection+for+Deformable+Objects&issn=0167-7055&date=2005&volume=24&issue=1&pages=61-81

Journal of Virtual Reality and Broadcasting, Volume 4(2007), no. 15

[TPB"89] Demetri Terzopoulos, John C. Platt,
Alan H. Barr, David Zeltzer, Andrew
Witkin, and Jim Blinn, Physically-based
modeling:  past, present, and future,
SIGGRAPH °89: ACM SIGGRAPH 89
Panel Proceedings (New York, NY, USA),
ACM Press, 1989, 1SBN 0-89791-353-1,
pp- 191-209.

[VF02] William T. Vetterling and Brian P. Flan-
nery, Numerical Recipes in C++: The Art
of Scientific Computing, 2"¢ ed., Cam-
bridge University Press, Cambridge (UK)
and New York, 2002, 1SBN 0-521-75033-
4.

Citation

Antoine Jonquet, Olivier Nocent and Yannick Remion,
The Art to keep in touch: The ”Good Use of
Lagrange Multipliers, Journal of Virtual Reality

and Broadcasting, 4(2007), no. 15, January 2008,
urn:nbn:de:0009-6-12767, ISSN 1860-2037.

urn:nbn:de:0009-6-12767, ISSN 1860-2037


http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Terzopoulos&aufirst=Demetri&title=+SIGGRAPH+A+ACM+SIGGRAPH+89+Panel+Proceedings&isbn=0-89791-353-1&date=1989&pages=191-209
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Terzopoulos&aufirst=Demetri&title=+SIGGRAPH+A+ACM+SIGGRAPH+89+Panel+Proceedings&isbn=0-89791-353-1&date=1989&pages=191-209
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Vetterling&aufirst=William&title=Numerical+Recipes+in+The+Art+of+Scientific+Computing&isbn=0-521-75033-4&date=2002
http://www.digibib.net/openurl?sid=hbz:dipp&genre=book&aulast=Vetterling&aufirst=William&title=Numerical+Recipes+in+The+Art+of+Scientific+Computing&isbn=0-521-75033-4&date=2002

Journal of Virtual Reality and Broadcasting, Volume 4(2007), no. 15

.

Figure 6: A billiard game session illustrating our algorithm for constraints management (11 balls and 77 in-
equality constraints).

urn:nbn:de:0009-6-12767, ISSN 1860-2037



	Introduction
	Lagrange equations of motion
	Unconstrained motion
	Constrained motion
	Inequality constraints management

	Previous work
	Our contribution
	A first approach
	The ``right'' algorithm

	Results and Comparisons
	Conclusion

