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Abstract

Audio-visual documents obtained from GermanTV

news are classified according to theIPTC topic cat-
egorization scheme. To this end usual text classifi-
cation techniques are adapted to speech, video, and
non-speech audio. For each of the three modalities
word analogues are generated: sequences of syllables
for speech, “video words” based on low level color
features (color moments, color correlogram and color
wavelet), and “audio words” based on low-level spec-
tral features (spectral envelope and spectral flatness)
for non-speech audio. Such audio and video words
provide a means to represent the different modalities in
a uniform way. The frequencies of the word analogues
represent audio-visual documents: the standard bag-
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of-words approach. Support vector machines are used
for supervised classification in a 1 vs.n setting. Clas-
sification based on speech outperforms all other single
modalities. Combining speech with non-speech audio
improves classification. Classification is further im-
proved by supplementing speech and non-speech au-
dio with video words. Optimal F-scores range between
62% and 94% corresponding to 50% - 84% above
chance. The optimal combination of modalities de-
pends on the category to be recognized. The construc-
tion of audio and video words from low-level features
provide a good basis for the integration of speech, non-
speech audio and video.

Keywords: Audio-visual content classification, sup-
port vector machines, speech recognition, integration
of modalities.

1 Introduction

Content processing of speech, non-speech audio and
video data is one of the central issues of recent re-
search in information management. During the last
years new methods for the classification of text, au-
dio, video and voice information have been developed,
but Multimodal analysis and retrieval algorithms es-
pecially towards exploiting the synergy between the
various media is still considered as one of the major
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challenges of future research in multimedia informa-
tion retrieval [LSDJ06]. The combination of features
from different modalities should lead to an improve-
ment of results. We present an approach to supervised
multimedia classification that allows to benefit from
the joint exploitation of speech, video and non-speech
audio.

We use low-level features such as color correlo-
grams, spectral flatness, and syllable sequences for the
integrated classification of audio-visual documents.
The novelty of our approach is to process non-speech
information in such a way that it can be represented
jointly with linguistic information in a generalised
term-frequency vector. This allows for subsequent
processing by usual text-mining techniques including
text classification, semantic spaces, and topic-maps.

Support Vector Machines (SVM) have been ap-
plied successfully to text classification tasks [Joa98,
DPHS98, DWV99, LK02]. We adapt commonSVM

text classification techniques to audio-visual docu-
ments which contain speech, video, and non-speech
audio data. To represent these documents we apply the
bag-of-words approach which is common to text clas-
sification. We generate word analogues for the three
modalities: sequences of phonemes or syllables for
speech, “video-words” based on low level color fea-
tures for video, and “audio-words” based on low-level
spectral features for general audio.

We assume that there is a hidden code of audio-
visual communication. This code cannot be made ex-
plicit, it consists of a tacit knowledge that is shared and
used by the individuals of a communicating society.
Furthermore we assume that, for the purpose of sub-
sequent classification, the unknown hidden code can
be substituted by an arbitrary partition of the feature
space. Our approach is inspired by thefenone recog-
nition technique which is an alternative to standard
speech recognition for classification purposes. Fenone
recognition has been done successfully by Harbeck
[Har01] for the speech domain. Instead of using a stan-
dard speech recognizer, which recognises phonemes
— i.e. areas in the feature space that are defined by
linguistic tradition — a cluster analysis is performed,
which segments the feature space in adata driven
fashion. The recognized fenones serve as analogues
to phonemes and are forwarded to a subsequent clas-
sification procedure. The advantage of fenones over
phonemes is that they can be calculated even if there
is no a priory knowledge of the language and conse-
quently of the code under consideration. Their disad-

vantage is that they do not accommodate human inter-
pretation.

Thus as proposed by [Leo02] each element of a par-
tition,i.e. a disjoint segmentation, of the feature space
can be considered as a unit — sign — of the audio-
visual code whereas the partition itself is the respective
vocabulary of audio or video-signs. The visual vocab-
ularies that we create arenot sets of elementary sym-
bols, but abstract subsets of the feature space, which
is defined by the attribute values of visual low-level
features. They have nothing in common with visual
vocabularies that have been used elsewhere [FGJ95]
for visual programming purposes. Instead they resem-
ble to what is called a mood chart in the area of visual
design [RPW06].

The reason for using an automatically generated vo-
cabulary inducing a set of artificial (and therefore in-
explicable) concepts is that detecting a wider set of
concepts other than human faces in images or video
scenes turned out to be fairly difficult. Lew [Lew00]
showed a system for detecting sky, trees, mountains,
grass, and faces in images with complex backgrounds.
Fan, et al. [FGL04] used multi-level annotation of nat-
ural scenes using dominant image components and se-
mantic concepts. Li and Wang [LW03] used a statisti-
cal modeling approach in order to convert images into
keywords. Rautiainen, et al. [RSP+03] used temporal
gradients and audio analysis in video to detect seman-
tic concepts.

The non-speech audio vocabularies that we create
are not a set of elementary motifs of harmonic stereo-
types, but abstract subsets of the feature space, which
is defined by the attribute values of acoustic low-level
features. Our corpus of audio-visual documents con-
sists of news recordings which contain very few seg-
ments that could be called musical in a narrower sense.
Therefore automatic music transcription as for exam-
ple in [CLL99] is not appropriate for our material.

One further reason for the application of non-speech
audio and video signs is that we want to take into ac-
count the entire document while preserving the essen-
tial information present in small temporal segments.
Thus mapping short time intervals to video or audio
signs as prototypical representations seems to be a
promising approach for the representation of audio-
visual scenes. Finally the application of audio and
video signs is an integrated and successful approach to
the fusion of speech, video and non-speech audio. We
thus present a theoretical framework for the combina-
tion of audio and video information. This is currently
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considered as a challenging task [LSDJ06].
In the next chapter we describe the corpus of audio-

visual documents that was utilized for content classi-
fication. Feature extraction and the representation of
audio-visual documents in the classifier’s input space
is described in section 3. In section 4 we specify the
classifier and its parameters. Results are presented in
section 5 and in section 6 we conclude.

Categories and number of documents

politics 200 human interest 40
justice 120 disaster 38
advertisement 119 culture 22
sports 91 jingle 22
conflicts 85 health 19
economy 68 environmental issue 17
labour 49 leisure 15

science 13
education 10
weather 8
social issue 6
religion 4

Table 1: Size of IPTC-classes in terms of number of
documents. Only those classes, which contain more
than 45 documents (left column) were considered.

2 The Audio-Visual Corpus

The data for the audio-visual corpus was obtained
from two different German news broadcast stations:
N24 and n-tv. The audio-visual stream was segmented
manually into news items. This resulted in a corpus
that consists of 693 audio-visual documents. Docu-
ment length ranges between 30 sec. and 3 minutes.
The semantic labeling of the news stories was done
manually according to the categorization scheme of
the International Press Telecommunications Council
(IPTC) (see http://www.iptc.org). The material from
N24 consists of 353 audio-visual documents and cov-
ers the period between May 15 and June 13, 2002 (in-
cluding reports from the World Cup soccer tournament
in Korea and Japan. This event can be considered as
semantically unique. It does not appear in the train-
ing corpus for generating the audio-visual “vocabular-
ies”, which were obtained from tv recordings of Oc-
tober 2002). The data from n-tv comprises 340 doc-
uments and covers the last seven days of April 2002.

Table1 shows the distribution of topic classes in the
corpus. For convenience we added two classes “ad-
vertisement” and “jingle” to the 17 top level classes
of the IPTC-categorization. The number of documents
in the classes total more than 693. Some documents
were attributed to two or three classes because of the
ambiguity of their content. For example, audio-visual
documents on the Israel-Palestine conflict often were
categorized as belonging to both “politics” and “con-
flicts”.

The size of the classes in the audio-visual corpus
varies considerably: “politics” comprises 200 audio-
visual documents whereas “religion” contains just 4.
We only used those seven categories with more than
45 documents (shown in the left column of table1)
for classification experiments. As will be described
in section 4 we trained a separate binary classifier for
each of these seven classes. All documents of the small
categories (less than 45 documents) were always put in
the set of counter-examples.

In Figure1 the document frequency, i.e. the number
of documents in which a given sign occurs, is calcu-
lated for different audio and video signs. Document
frequency is a term weight that is commonly used in
text mining applications in order to quantify how good
a given term serves as an indicator of a document’s
content. A term that occurs in all documents of a cor-
pus is not considered as a useful indicator, whereas
a term that occurs in few classes is supposed to be
specific to the document’s content. It can be seen
that most of the visual signs have a medium docu-
ment frequency, which makes them useful for con-
tent classification. The non-speech audio signs show
a less favourable pattern, rendering it inferior for con-
tent classification: most of the audio signs occur in
more than a quarter of the documents. Some audio
signs occur in nearly every document. As mentioned
before the whole corpus comprises 693 documents.

In the same fashion as a speech recognizer has to be
trained in order to acquire a model of the speech to be
recognized, the vocabularies for video and non-speech
audio have to be generated from a training corpus. In
order to obtain significant results the training data has
to be different from the data to be classified. There-
fore the audio-visual corpus described above wasnot
used for the generation of the visual and non-speech
vocabulary, with the exception of some control exper-
iments marked as “corpus” that are presented in fig-
ure3 and4.
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Figure 1: Rank distribution of document frequency of video and audio signs.The left panel shows the
document frequency of the visual signs generated from the thee low level features described in section3.2. The
right panel shows the document frequency for two audio features described in section3.3. Sizes of the visual
and acoustic vocabulary are 400 and 200 signs respectively.

3 Feature Extraction

The feature extraction procedures for each of the three
modalities speech, video and non-speech audio are in-
dependent from each other. As in [PLL+02] sylla-
bles are stringed together to form terms, that do not
necessarily correspond to linguistic word boundaries.
Video signs and non-speech audio signs are defined
as subsets of the respective feature space. Sequences
of video signs are referred to asvideo words, and se-
quences of non-speech audio signs are calledaudio
words.

3.1 Speech

The automatic speech recognition system (ASR) was
built using the ISIP (Institute for Signal and Infor-
mation Processing) public domain speech recognition
tool kit from Mississippi State University. We im-
plemented a standardASR system based on a Hidden
Markov Model. TheASR used cross-word tri-phone
models trained on seven hours of data recorded from
radio documentary programs. These included both
commentator speech and spontaneous speech in inter-

views, and were thus similar to speech occurring inTV

news of our corpus.

The audio track of each audio-visual document was
speaker segmented using theBIC algorithm [TG99].
Breaks in the speech flow were located with a silence
detector and the segments were cut at these points in
order to insure that no segment be longer than 20 sec-
onds. However, the acoustic signal was not separated
into speech and non-speech segments. Therefore the
output of the speech recognizer also consists of non-
sense syllable sequences generated by the recognizer
during music and other non-speech audio.

Number of types (2nd line) and tokens (last line)
of syllablen-grams

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
3766 71505153789177478182492183707

189894189212188532187853187175186497

Table 2: Number of syllable-n-grams in the audio-
visual corpus. The number of syllable-n-grams in the
running text (tokens) as well as of different syllable-n-
grams (types) are displayed.
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The language model was trained on texts which
were decomposed into syllables using the syllabifica-
tion module of theBOSSII speech synthesis system
[SWH+00]. Exploratory investigation allowed us to
determine that 5000 syllables give good recognition
performance. The syllable language model was a syl-
lable tri-gram model and was trained on 64 million
words from the German dpa newswire. The advantage
of using a syllable-based language model instead of a
word-based model is that words can be generated from
syllables on-the-fly which leads to reduction of vocab-
ulary size, less domain dependency and therefore less
out-of-vocabulary errors. A syllable base language
model is especially useful when theASR is applied to
a language which is highly productive at the morpho-
syntactic level, like German in our case [LEP+02].

From the recognized syllables,n-grams (1 ≤ n ≤
6) were constructed in order to reach a level of seman-
tic specificity comparable to that of words. The use of
n-grams also makes it possible to adjust the linguis-
tic units appropriate to the trade-off between semantic
specificity and low probability of occurrence, which is
especially important when document classes are small.
From previous experiments ontextual data we have
observed that unit size is among the most important
determinants of the classification accuracy of support
vector machines [PLL+02].

As the number of syllablen-grams in the audio-
visual documents is large, a statistical test is used to
eliminate unimportant ones. First it is required that
each term must occur at least twice in the corpus. In
addition, the hypothesis that there is a statistical rela-
tion between the document class under consideration
and the occurrence of a term is investigated by aχ2-
statistic. A term is rejected when itsχ2 statistic is be-
low a thresholdθ. The values ofθ used in the experi-
ments areθ = 0.1 andθ = 1.

3.2 Video

In the same way as a speech recognizer has to be
trained in order to learn a vocabulary of phonemes
(acoustic model) and how they are combined to form
syllables or words (language model), a visual vocabu-
lary has to be learned from training data. The genera-
tion of such a visual vocabulary was done on a training
corpus of video data from recordedTV news broad-
casts. This training corpus is different from the cor-
pus described in the preceding section. It contains 11
hours of video sampled in October 2002.

First the video data was split into individual frames.
To reduce the huge amount of frames, only one frame
per second of video material was selected. This could
be done because the similarity between neighbouring
frames is usually high. In this manner the frame count
was reduced by approximately a factor 3. After that,
the three low-level features were extracted from the
reduced set of frames and the buoy generation method
[Vol02] was applied to their respective feature spaces,
generating a disjoint segmentation. In this way sets of
prototypical images were obtained for each of the three
features. These sets are the visual vocabularies and
their elements are the video signs. Visual vocabularies
of the size of 100, 200, 400 and 800 video signs were
created.

Number video signn-grams in theAV -corpus

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
types 363 5305 6947 6749 6380 5967

A tokens 9060 8378 7696 7128 6617 6128
types 363 5495 7005 6793 6421 6005

B tokens 9060 8378 7696 7128 6617 6128
types 298 5050 6909 6789 6416 5997

C tokens 9060 8378 7696 7128 6617 6128

Table 3: The number of running words (tokens) and of
different video words (types) is displayed for a vocab-
ulary size of 400 video signs based on different fea-
tures, A: moments of 29 colors, B: correlogram of 9
colors, C: wavelet of 9 colors

To represent the video scenes of the audio-visual
corpus the video stream is first segmented into coher-
ent units (shots). Then for each shot a representative
image is selected, which is called thekey frameof the
shot. The segmentation is done by algorithms mon-
itoring the change of image over time. Two adjacent
frames are compared and their difference is calculated.
The differences are summed, and when the sum ex-
ceeds a given threshold a shot-boundary is detected,
and the key frame of the shot is calculated. For each
shot there are three low-level features, which are ex-
tracted from its key frame: first and second moments
of 29 colors, a correlogram calculated on the basis
of 9 major colors, and a wavelet that was also based
on 9 major colors. These features where chosen be-
cause they combine aspects of color and texture. Each
of the three visual features is mapped to the nearest
video-sign in the respective visual vocabulary. From
the video signs,n-grams (1 ≤ n ≤ 6) were generated
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by stringing video signs together according to their se-
quence in the audio-visual corpus. Thesen-grams are
also referred to as “video words”.

As mentioned above, the results presented in the pa-
per were obtained by using visual vocabularies that
were generated from a training corpus of 11 hours of
video in October 2002. Note that the audio-visual cor-
pus to be classified was sampled three to six months
before the training corpus, in the period between April
and June 2002 (see section2). In order to get an in-
sight into the temporal variation of the visual vocabu-
lary of the communicating society, we generated two
additional visual vocabularies. One was drawn from
the test corpus itself (before October 2002). The other
was created from January 2003 (three months after Oc-
tober 2002). Interestingly, the comparison of results
based on the different vocabularies shows little differ-
ence. (see table4).

3.3 Non-Speech Audio

The low-level audio features that we used were audio
spectrum flatness and audio spectrum envelope as de-
scribed inMPEG-7-Audio. Audio spectrum flatness
was measured for 16 frequency bands ranging from
250 Hz to 4 kHz for every audio frame of 30 msec.
The audio spectrum envelope was calculated for 16
frequency bands ranging from 250 Hz to 4 kHz plus
additional bands for the low-frequency (below 250 Hz)
and high-frequency (above 4 kHz) signals.

Exploratory investigation allowed us to conclude
that sensible sizes of the acoustic vocabulary vary be-
tween 50 and 200 audio signs. Mean and variance
were calculated for the features of 4, 8 and 16 con-
secutive audio frames. We suspect that units of 16
audio frames (=480msec) enable us to capture (non-
linguistic) meaning-related properties of the audio sig-
nal. This duration corresponds to a quarter-note in
alegretto tempo (mm = 120). Shorter units of 8 au-
dioframes (240msec) correspond to the typical length
of a syllable — in conversational English nearly 80%
of the syllables have a duration of 250 msec. or less
[WKMG98] — as well as to the duration of the echoic
memory, which can store 180 to 200 msec [Hug75].
Units of the length of 4 audio features were also
considered. They roughly correspond to the average
length of a phoneme.

Generation of the non-speech acoustic vocabulary
was done on the same training corpus that was also
used for video sign creation (October 2002). For both

Number of audio-signn-grams in theAV -corpus

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
types 50 2377 54k 175k 246k 280k

A tokens 364k 364k 363k 363k 362k 361k
types 50 2500 79k 249k 321k 343k

B tokens 365k 364k 363k 363k 362k 361k

Table 4:Number of audio words in the audio-visual
corpus. The number of running words (tokens) and of
different words (types) are displayed for a vocabulary
size of 50 audio signs of 4-frame segments based on
two different features, A: spectral envelope, B: spec-
tral flatness.

audio features, mean and variance of spectral flatness
and spectral envelope were calculated and the buoy
generation method [Vol02] was applied to their feature
spaces, generating a disjoint segmentation. In this way
sets of prototypical non-speech audio patterns were
obtained for each feature. These sets are the acoustic
vocabularies and their elements are the respective non-
speech audio signs. Vocabularies of 50, 100 and 200
audio signs were created for audio signs of 4, 8 and 16
frame segments respectively. We constructn-gram se-
quences (n ≤ 6) from these acoustic units by stringing
consecutive audio signs together. This leads to non-
speech audio words of up to roughly 3 sec., which cor-
responds to the psychological integration time [Pöp85]
or the typical length of a musical motif.

4 The Classification Procedure

4.1 Preprocessing

The feature extraction described in the preceding sec-
tion resulted in sequences of syllable-n-grams, video
words and non-speech audio words for each audio-
visual document. The notion “term” is used here for
any of the three units. For each document a vector of
counts of terms is created to form a term-frequency
vector. The term-frequency vector contains the num-
ber of occurrences for eachn-gram in a document.
Therefore each audio-visual documentdi is repre-
sented by its term-frequency vector

fi = (r1 · f(w1, di), . . . , rn · f(wn, di)) (1)

whererj is an importance weight as described below,
wj is the j-th term, andf(wj , di) indicates how of-
tenwj occurs in the video scenedi. Term-frequency
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vectors are normalized to unit length with respect to
L1. In the subsequent tables the use of these normal-
ized term-frequencies is indicated by “rel”. The vector
of logarithmic term-frequencies of a video scenedi is
defined as

li =
(
r1 log(1 + f(w1, di)), . . . (2)

. . . , rn log(1 + f(wn, di))
)

Logarithmic frequencies are normalized to unit length
with respect toL2. Other combinations of norm and
frequency transformation were omitted because they
appeared to yield worse results. In the tables below
the use of logarithmic term-frequencies is indicated by
“log”.

Importance weights like the well-known inverse
document frequency (see figure1) are often used in
text classification in order to quantify how specific a
given term is to the documents of a collection. Here
however another importance weight, namely redun-
dancy, is used. In information theory the usual defini-
tion of redundancy is maximum entropy (log N ) minus
actual entropy. So redundancy is calculated as follows:
consider the empirical distribution of a term over the
documents in the collection and define the importance
weight of termwk by

rk = log N +
N∑

i=1

f(wk, di)
f(wk)

log
f(wk, di)
f(wk)

, (3)

wheref(wk, di) is the frequency of occurrence of term
wk in documentti andN is the number of documents
in the collection. The advantage of redundancy over
inverse document frequency is that it does not simply
count the documents that a type occurs in, but takes
into account the frequencies of occurrence in each of
the documents. Since it was observed in previous work
[LK02] that redundancy is more effective than inverse
document frequency, two experimental settings are
considered in this paper: term frequenciesf(wk, di)
are multiplied byrk as defined in equation (3) (de-
noted by “+” at column “red” in subsequent tables); or
term frequencies are left as they are:rk ≡ 1 (denoted
by “–” ). For subsequent classification an audio-visual
documentdi is represented byfi or li according to the
parameter settings.

4.2 Support Vector Machines

A Support Vector Machine (SVM) is a supervised
learning algorithm that has been successful in prov-

ing itself an efficient and accurate text classification
technique [Joa98, DPHS98, DWV99, LK02]. Like
other supervised machine learning algorithms, anSVM

works in two steps. In the first step — thetraining
step — it learns a decision boundary in input space
from preclassified training data. In the second step —
theclassificationstep — it classifies input vectors ac-
cording to the previously learned decision boundary.
A singlesupport vector machine can only separatetwo
classes — a positive class (y = +1) and a negative
class (y = −1).

class +1

class -1

margin

separating hyperplane
w*x+b=0

w*x+b<-1

w*x+b>1
 ξ 

k
v

Figure 2:Operating mode of a Support Vector Ma-
chine. TheSVM algorithm seeks to maximise the mar-
gin around a hyperplane that separates a positive class
(marked by circles) from a negative class (marked by
squares).

In the training step the following problem is
solved: Given is a set of training examples

S` = {(x1, y1), (x2, y2), . . . , (x`, y`)}

of size` from a fixed but unknown distributionp(x, y)
describing the learning task. The term-frequency vec-
torsxi represent documents andyi ∈ {−1, +1} indi-
cates whether a document has been labeled with the
positive class or not. TheSVM aims to find a decision
rule

hL : x → {−1,+1}

that classifies documents as accurately as possible
based on the training setS`.

The hypothesis space is given by the functions
f(x) = sgn(wx + b), wherew andb are parameters
that are learned in the training step and which deter-
mine the class separating hyperplane. Computing this
hyperplane is equivalent to solving the following opti-
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mization problem [Vap98, Joa02]:

minimize: V (w, b, ξ) =
1
2
ww + C

∑̀

i=1

ξi

subject to: ∀`
i=1 : yi(wx + b) ≥ 1− ξi

∀`
i=1 : ξi ≥ 0

The constraints require that all training examples are
classified correctly, allowing for some outliers sym-
bolized by the slack variablesξi. If a training example
lies on the wrong side of the hyperplane, the corre-
spondingξi is greater than 0. The factorC is a para-
meter that allows for trading off training error against
model complexity. In the limitC→∞ no training er-
ror is allowed. This setting is called hard marginSVM.
A classifier with finiteC is also called a soft margin
Support Vector Machine. Instead of solving the above
optimization problem directly, it is easier to solve the
following dual optimisation problem [Vap98, Joa02]:

minimize:

W (α) = −
∑̀

i=1

αi +
1
2

∑̀

i=1

∑̀

j=1

yiyjαiαjxixj

subject to:
∑̀
i=1

0≤αi≤C

yiαi = 0 (4)

All training examples withαi > 0 at the solution
are called support vectors. The Support vectors are
situated right at the margin (see the solid circle and
squares in figure2) and define the hyperplane. The de-
finition of a hyperplane by the support vectors is espe-
cially advantageous in high dimensional feature spaces
because a comparatively small number of parameters
— theαs in the sum of equation (4) — is required.

In the classification step an unlabeled term-
frequency vector is estimated to belong to the class

ŷ = sgn(wx + b) (5)

Heuristically the estimated class membershipŷ corre-
sponds to whetherx belongs on the lower or upper side
of the decision hyperplane. Thus estimating the class
membership by equation (5) consists of a loss of infor-
mation since only the algebraic sign of the right-hand
term is evaluated. However the value ofv = wx + b
is a real number and can be used for voting agents, i.e.
a separateSVM is trained for each modality resulting
in three valuesvspeech, vvideo andvaudio. Instead of
calculating equation (5) we calculate

ŷ = sgn
(
g(vspeech, vvideo, vaudio)

)

where g(·) is the sum or the maximum or another
monotone function of its arguments. We have exper-
imented with different settings of this kind but with
little success.

It is well known that the choice of the kernel func-
tion is crucial to the efficiency of support vector ma-
chines. Therefore the data transformations described
above were combined with the following different ker-
nel functions:

• Linear kernel (L)
K(xi,xj) = xi · xj

• 2nd and 3rd order polynomial kernel (P(d))
K(xi,xj) = (xi · xj)d d = 2, 3

• Gaussian rbf-kernel (R(γ))
K(xi,xj) = e−γ‖xi−xj‖ γ = 0.2, 1, 5

• Sigmoidal kernel (S)
K(xi,xj) = tanh(xi · xj)

(6)
In some of the experiments these kernel functions

were combined to formcompositekernels, which use
different kernel functions for each modality (for ex-
ampleL for speech,R(1) for video andP (3) for au-
dio). Formally a composite kernel is defined as fol-
lows: Let the input space consist ofLs speech at-
tributes,Lv video attributes, andLa audio attributes,
which are ordered in such a way, that dimension 1 to
Ls correspond to speech attributes, dimensionsLs +1
to Ls + Lv correspond to video attributes, and dimen-
sionsLs +Lv +1 to Ls +Lv +La correspond to audio
attributes. Letπk

l (·) be the projection from the input
space to its subspace spanned by dimensionsk to l. A
composite kernel that uses kernelK1 for speech,K2

for video andK3 for audio is defined as

KK1,K2,K3(xi,xj) = K1

(
π1

Ls
(xi), π1

Ls
(xj)

)

+ K2

(
πLs+1

Ls+Lv
(xi), πLs+1

Ls+Lv
(xj)

)

+ K3

(
πLs+Lv+1

Ls+Lv+La
(xi), πLs+Lv+1

Ls+Lv+La
(xj)

)

The idea behind the construction of composite ker-
nels is that the different semiotic and cognitive con-
ditions for speech, video and audio imply different
geometries in the respective factor spaces. I.e. we
treat audio, video, and speech differently although we
represent them in the same input space. A kernel is
called ahomogeneouskernel if K1 = K2 = K3. The
results of experiments with composite kernels were,
however, also disappointing and suggested that homo-
geneous kernels are the best solution to the integration
of modalities.
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We think that this negative result is interesting, be-
cause the fact that the different modalities speech,
video and non-speech audio do not require different
treatment suggests that the respective semiotic systems
are not as independent as it is often supposed.

4.3 Settings for Classification of Audio-
Visual Documents

We use a soft margin Support Vector Machine with as-
symetric classification cost in a1-vs-n setting, i.e. for
each class anSVM was trained that separates this class
against all other classes in the corpus. The cost factor
by which the training errors on positive examples out-
weigh errors on negative examples is set toj = 2#neg

#pos ,
where#pos and#neg are the number of positive and
negative examples respectively. This means that the
weight of false positive training errors is larger for
smaller classes, and in the case#neg = #pos pos-
itive examples on the wrong side of the margin are
given twice the weight of negative examples. The
trade-off between training error and margin was set to
C =

∑`
i=1 ‖xi‖−1 which is the default in theSVM

implementation that we used.

It is well known that the choice of kernel func-
tions is crucial to the efficiency of support vector ma-
chines. Therefore the data transformations described
above were combined with the homogeneous kernel
functions defined in equation (6).

5 Results

The following tables show the classification results on
the basis of the different modalities. A “+” in the col-
umn “red.” indicates that the importance-weight re-
dundancy is used, and “–” indicates that no impor-
tance weight is used. The values of the significance
thresholdθ (used exclusively for syllables in speech
experiments) areθ = 0.1 and θ = 1. The col-
umn “transf.” indicates the frequency transformation
that was used, “log” stands for logarithmic frequen-
cies with L2-normalization and “rel” means relative
frequencies (i. e. frequencies withL1-normalization).
The next column “kernel” indicates the kernel func-
tion: L is the linear kernel,S is a sigmoidal kernel,
andP (d) andR(γ) denote the polynomial kernel and
the rbf-kernel respectively. The last column shows the
classification result in terms of theF -score, which is

calculated as

F =
2

1
prec + 1

rec

,

whererec andprec are the usual definitions of re-
call and precision [MS99]. Since a 1-to-n scheme
was used for classification the results of classifying
each class against all other classes are presented in in-
dividual rows. All classification results presented in
this section were obtained by tenfold crossvalidation,
where the vocabulary is held constant. This makes the
results statistically reliable. Crossvalidation involving
vocabulary generation is unnecessary because the data
set used for the generation of the vocabulary is sepa-
rate from the multimedia corpus.

Note that a correlation matrix between features from
different modalities cannot be presented in a meaning-
ful way. Each of the three modalities is represented by
more than 1000 features (see table2, 3 and4) and this
is would lead to a correlation matrix with more than
109 entries.

5.1 Classification Based on Speech

The results on speech-based classification for the op-
timal combinations of parameters are presented in in
table5. From the speech recognizer output syllable-
n-grams were constructed forn = 1 to n = 6. Most
classes were best classified with rbf-kernels (cf. ta-
ble5).

Results based on speech

categoryn red. θ transf.kernelF -score
justice 1 + 1.00 rel R(1) 65.0
economy2 + 1.00 rel P(2) 59.3
labour 1 + 1.00 rel R(1) 85.3
politics 2 + 1.00 rel R(0.2) 74.7
sport 1 + 1.00 rel R(5) 80.3
conflicts 2 + 1.00 rel R(0.2) 73.5
advertis. 1 – 1.00 log R(0.2) 85.0

Table 5: Results of the classification on the basis of
syllable sequences.

Note that only sequences of one or two syllables
were used for classification. This replicates an ear-
lier result [PLL+02]: The optimal unit-size for spoken
document classification is often smaller than a word
(in German the average word length is∼ 2.8 syllables)
especially under noisy conditions.
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5.2 Classification Based on Video

Table 6 shows results based on a vocabulary of 100
video signs, table7 those for 400 video signs. The
length of the video words (i.e. the length of then-
gram) is given in column 2 and the accuracy is pre-
sented in column 6. In the case of a visual lexicon of
100 video signs the units used for classification aren-
grams with a size varying fromn = 1 to n = 5. This
means that these units are built using one to five video-
shots. Those categories that are classified on the basis
of shot-unigrams show relatively poor accuracy.

F -scores obtained using small visual vocabulary

categoryn red.transf.kernel F -score
justice 4 – log S 46.4
economy3 – rel R(5) 29.1
labour 2 – log S 41.6
politics 4 – rel R(1.0) 48.5
sport 5 + rel R(0.2) 51.9
conflicts 2 – log R(0.2) 35.0
advertis. 1 – log R(1) 85.7

Table 6:Classification results based on a visual vocab-
ulary of 100 video signs

We therefore believe that we have detected regular-
ities in the succession of video-units, which reveal a
kind of temporal (as opposed to spatial) video-syntax.
Rbf-kernels seem to be the most appropriate for clas-
sification on the basis of video-words when a small set
of video signs is considered.

F -scores obtained using large visual vocabulary

categoryn red.transf.kernel F -score
justice 1 – log S 42.0
economy1 + log L 31.2
labour 3 – log S 31.2
politics 2 – rel S 53.4
sport 4 + rel R(5) 53.8
conflicts 1 – rel L 39.8
advertis. 5 + rel R(1) 91.2

Table 7:Classification results based on a visual vocab-
ulary of 400 video signs

With more video signs to choose from, the perfor-
mance increases significantly (with the exception of
the categories “labour” and “justice”), and then-gram
length decreases.

labour economy conflicts sport justice politics

100
200
400
800
corpus

0
20

40
60

80
10
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Figure 3: Classification performance vs. vocabu-
lary size. Different classes show different behaviour
when the vocabulary size is changed. A vocabulary
size of 400 video signs seems to be optimal. Note that
the visual vocabulary which was obtained from the test
corpus itself (labeled as “corpus”) does not yield better
classification results compared to the others.

We attribute this to the fact that the semantic speci-
ficity of n-grams increases withn. As units from a
larger vocabulary are on average semantically more
specific than units from a smaller one, the specificity
of video-words obtained from the larger vocabulary is
compensated by a decrease ofn-gram degree. Results
for optimal parameter settings and different sizes of
the visual vocabulary are presented in figure3. Vocab-
ularies of 400 video signs yielded the best results on
average. This vocabulary size is also used for integra-
tion of modalities described in section5.4.

One might argue that the collection of a visual vo-
cabulary at a point in time different from the test cor-
pus is flawed because typical images cannot be present
in both corpora. However our principal assumption
was that the video words reveal a kind of implicit code,
which is known to the individuals of a given society.
The assumption of the existence of such a code im-
plies that it is shared by the members of the society and
functions as a means to convey (non-linguistic) infor-
mation. To fulfil this communicative function a code
may not vary too quickly and should apply to past and
future alike. As can be seen in figure4, experimental
results with visual lexicons created at different times
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(summer 2002 and January 2003) did not show a con-
sistent change in performance and support the assump-
tion that the vocabulary is independent from the ac-
quisition date. For the practical application this means
that once a visual vocabulary is generated it can be
used for a long period of time.

From figure4 one can see that the effect of the
change of the visual semiotic system is limited. This
is reflected in the results of the classification. Cat-
egories “justice” and “sports” and to a lesser extent
“politics” show a decrease of performance when the
lexicon was drawn from the October material instead
of the corpus itself. This can be attributed to the fact
that there were salient news in these categories at the
time when the corpus was sampled, namely the soc-
cer world championship (sports) and a massacre at a
German high school (justice).

The results for the categories “economy” and “con-
flicts” are nearly independent from the creation date of
the visual lexicon. These categories are communicated
by visual signs that seem to be temporarily invariant.

The relatively good results for video classification
suggest that the task of supervised content classifi-
cation of audio-visual news stories is different form
the recognition of objects on images for retrieval pur-
poses. News stories are not pictures of reality. They
are man-made messages intended to be received by the
news observers. Thus the regularities between content
and visual expression follow aesthetical rules rather
than reality itself.

In his semiotic analysis of images Roland Barthes
distinguishes between the denoted message and a con-
noted message of a picture. In his view all imitative
arts (drawings, paintings, cinema, theater) comprise
two messages: adenoted message, which is the analo-
gon itself, and aconnoted message, which is the man-
ner in which the society to a certain extent commu-
nicates what it thinks of it. The denoted message of
an image is an analogical representation (a ’copy’) of
what is represented. For instance the denoted message
of an image which shows a person is the person it-
self. Therefore the denoted message of an image is
not based on a true system of signs. It can be consid-
ered as a message without a code. The connotive code
of a picture in contrast results from the historical or
cultural experience of a communicating society. The
code of the connoted system is constituted by a uni-
versal symbolic order and by a stock of stereotypes
(schemes, colors, graphisms, gestures. expressions,
arrangements of elements). [Bar88]

labour economy conflicts sport justice politics

corpus
Okt/02−100
Jan/03−100

0
20

40
60

80
10

0

Figure 4:Classification performance vs. date of vo-
cabulary acquisition. The visual vocabularies were
generated from different training corpora which were
sampled at different instances of time: January 2003,
October 2002 and April to June 2002, denoted as “cor-
pus”. The figure shows that the variation between
classes is larger than the variation between different
lexicon creation times.

The rationale behind the use of low-level video fea-
tures is not to discover the denoted message of a video-
artefact (whether it shows for instance a person or a
car) but to reveal the implicit code which underlies its
connoted message. We suppose that some of the as-
pects of the connoted code postulated by Barthes are
reflected in the video words.

5.3 Classification Based on Non-speech Au-
dio

Classification on the basis of non-speech audio words
is shown in table8. The error rates are worse than
those of the other two modalities (speech and video).
The only category which is accurately classified is “ad-
vertisement”. Most classifications are based on audio
sign unigrams, i.e. audio words that consist of only
one audio sign. Building sequences of audio signs
generally does not improve the performance. This
means that, in contrast to video words, the audio words
do not represent a kind of temporal syntax.

In contrast to video there is no dependency between
size of vocabulary and length ofn-grams that form au-
dio words. We thus conclude that, in contrast to the
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F -scores obtained using different sizes of non-speech audio vocabulary

50 signs 100 signs 200 signs
4 frames8 frames16 frames4 frames8 frames16 frames4 frames8 frames16 frames

justice 35.4 34.6 35.2 36.0 35.4 37.3 36.9 36.1 35.5
economy 21.1 22.5 22.8 23.9 23.5 20.6 20.1 24.0 24.5
labour 18.9 17.0 20.6 21.8 16.8 18.6 19.6 18.2 19.6
politics 47.0 46.9 46.1 48.6 47.3 46.6 45.7 46.7 44.9
sport 40.8 32.2 35.3 38.2 31.4 39.0 35.1 35.3 36.0
conflicts 27.8 24.5 28.9 28.2 22.1 28.9 27.2 23.6 25.6
advertis. 90.5 90.4 91.2 92.1 93.3 90.2 93.2 92.4 91.8

Table 8:Comparison of results for non-speech audio with different audio signs and different sizes of non-speech
audio vocabularies.

video words, the audio words do not reveal an implicit
acoustic code. There is also no clear pattern of a rela-
tionship between the number of frames that form the
audio signs and vocabulary size as can be seen from
table8. However, audio signs based on 4 frames yield
slightly better results than the other frame lengths. The
best results in average were obtained for a vocabulary
of 100 audio signs based on a 4-frame audio features.
From exploratory experiments we decided to use a vo-
cabulary of 50 audio signs based on 4 frames for the in-
tegration with the other media. Although non-speech
audio yielded poor results as a single modality, it is
beneficial when combined with speech.

5.4 Integrated Classification

Figure9 directly compares the error rates of all sin-
gle modalities. There is a clear ranking among the
three modalities, when they are employed individu-
ally. Speech yields best results for most classes, and
video is by far better than non-speech audio. There
is however one exception to the disappointing results
of non-speech audio. The generally superb rates of the
category “advertisement” are likely to be caused by the
shot duration in commercial spots, which is generally
very short. Furthermore the audio in advertisements is
usually compressed causing the overall energy in the
audio spectrum to be considerably higher than normal,
which is reflected by the audio-features that we used.
Another aspect is that commercials are broadcast re-
peatedly. Therefore in some cases identical spots are
present in both test and training data.

From exploratory experiments we concluded that
proper adjustment of the vocabulary sizes of the dif-
ferent modalities is crucial to a successful integration

LargestF -scores vs. chance

categoryspeechvideoaudiochance
justice 65.0 42.0 36.0 17.3
economy 59.3 31.2 23.9 9.8
labour 85.3 31.2 21.8 7.0
politics 74.7 53.4 48.6 28.9
sport 80.3 53.8 38.2 13.0
conflicts 73.5 39.8 28.2 12.3
advertis. 85.0 91.2 92.1 17.1

Table 9: Comparison of the results on single modal-
ities, that were obtained with optimal parameter-
settings

of modalities. A visual vocabulary of 400 audio signs
and a acoustical vocabulary of 50 audio signs calcu-
lated on the basis of 4 frames turned out to be optimal
when integrating two or three modalities.

Table10 shows results of the combined modalities
non-speech audio and video. The F-scores are better
than those based exclusively on non-speech audio, but
not better than those of single video (see table9 and7)
and still much worse than a combination of speech
with non-speech audio or video. We conclude that the
combination of video and non-speech audio generally
does not improve classification.

The picture changes when video is combined with
speech. Especially the classes “advertisements” and
“sports” show an improvement over the single modali-
ties for the combination of video and speech (see ta-
ble 11). Interestingly the optimal parameters have
changed: sigmoidal and linear kernels perform best for
all classes — a phenomenon that extends to the inte-
gration of all modalities — and the lengths of video
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F -scores obtained using video and non-speech audio

categoryn(audio)n(video)red.transf.kernel F

justice 1 5 + rel S 42.0
economy 1 1 – log R(0.2) 30.1
labour 3 3 – log S 29.8
politics 1 1 + log R(0.2) 51.7
sport 1 3 – rel R(0.2) 51.0
conflicts 5 1 – rel R(5) 38.3
advertis. 5 3 + log S 93.9

Table 10:Results of the classification with both audio-
words and video-words.

words and syllable-n-grams is slightly changed com-
pared to the single modalities (see tables5 and 7).
The combination of speech and video is especially ad-
vantageous for the category “sport”, but adding non-
speech audio yields a further improvement of accuracy
(see table13).

F -scores obtained using video and speech

n n
categoryvideospeechred. θ transf.kernel F

justice 1 1 + 1.00 log L 67.3
economy 2 2 + 1.00 log S 55.1
labour 2 2 + 1.00 log S 84.8
politics 1 2 – 1.00 log L 70.7
sport 3 2 + 1.00 log S 86.2
conflicts 2 2 + 1.00 log S 67.9
advertis. 3 1 + 1.00 log S 93.4

Table 11: Results of the classification with bothn-
grams of video signs and syllablen-grams.

Table12 shows the results of the combined modal-
ities speech and non-speech audio. The accuracy of
all classes (with the exception of “justice” and “pol-
itics”) improves when non-speech audio is added to
speech (see table5 and9). The categories “conflicts”
and “economy” can best be classified with the combi-
nation of speech and non-speech audio.

The result on the combination of speech and non-
speech audio has an implication to speech classifica-
tion in general: It can be useful to base speech clas-
sification not solely on linguistically defined features.
Especially when the speech data was sampled under
realistic conditions and contains background noise and
other non-speech signals. Results on fenone recogni-
tion point in the same direction [Har01]. Fenone-based

classification works even when the signal is so noisy
that it cannot be understood by a human listener.

One difference between the combination of speech
and non-speech audio and the combination of speech
and video is that optimaln-grams for both syllables
and audio-signs are in most cases longer than those of
the single modalities. In the case of the category “jus-
tice” syllablen-grams and audio words are used up to
the maximal length (n = 6). In other words, all avail-
able information is used, but the classifier cannot find
a hyperplane that is consistent with the patterns of both
speech and non-speech audio. A different kernel func-
tion or an adjustment of the speech and non-speech
subspace of the input space might have improved the
situation.

F -scores using speech and non-speech audio

category n n
categoryaudiospeechred. θ transf.kernelF
justice 6 6 + 0.1 rel R(1) 63.3
economy 1 5 + 1.0 rel R(5) 62.7
labour 5 4 + 1.0 rel R(5) 89.6
politics 6 2 + 1.0 rel R(0.2)72.5
sport 2 2 + 1.0 log S 83.5
conflicts 1 2 + 1.0 log S 74.1
advertis. 1 2 + 0.1 log S 92.0

Table 12: Results of the classification with bothn-
grams of non-speech audio and syllablen-grams

Table13 shows results of all combined modalities.
The category “labour” benefits most from the integra-
tion of modalities. The combination of the modalities
speech and non-speech audio leads to improved accu-
racy compared to speech alone. Adding video yields
even better results for the classes “sport”, “labour” and
“advertisement”. The F-scores of “labour”, “sport”,
“conflicts”, and “advertisement” are better than those
of the single speech modalities (see table9). The
reason seems to be that these categories show many
explicit non-speech features which make them distin-
guishable from others. This does not seem to be the
case for other categories like politics, where pictures
and sounds are not as important as words. In this last
table we have added the F-scores based on classifica-
tion by chance. These scores are independent of the
modalities used for classification and can also be com-
pared to all other F-scores in the previous tables.

The optimal combination of modalities depends
very much on the content class. There is no com-
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F -scores obtained using speech, video, and audio

categoryn (audio)n (speech)n (video) F chance
justice 4 5 3 62.1 17.3
economy 5 3 2 58.8 9.8
labour 4 2 4 91.4 7.0
politics 3 3 3 72.6 28.9
sport 4 4 2 87.2 13.0
conflicts 4 4 1 73.0 12.3
advertis. 2 1 5 94.6 17.1

Table 13: Results of the classification with audio-
words (50 signs, 4 frames), video-words (400 signs)
and sequences of syllables, compared to the F-measure
according to chance. The choice of parameters was
restricted to sigmoidal kernels, logarithmic frequen-
cies and the application of term weighting according
to equation (3).

bination of modalities that yields good results for all
classes. Media integration was unsuccessful for the
category “politics”, which was best classified (F=74.7)
on the basis of syllable bigrams. The category “jus-
tice” is best classified with video and speech: F=67.3.
The category “conflicts” is best classified with speech
and non-speech audio (F=74.1), and so is “economy”
(F=62.7). The categories, “sport” (F=87.2), “labour”
(F=91.4) and “advertisement” (F=94.6) are best clas-
sified with all three modalities.

6 Conclusion

Audio and video words constructed from low-level
features provide a good basis for the integration of
modalities in order to classify audio-visual documents.
Homogeneous kernels (see section4.2) are a good so-
lution to the integration of modalities. The optimal
combination of modalities depends, however, on the
category to be recognized. This is an important result,
since multimodal analysis and retrieval algorithms ex-
ploiting the synergy between the various media are
currently considered as one of the major challenges
of future research in multimedia information retrieval
[LSDJ06].

The visual vocabularies generated as described in
this paper are to a certain extent temporally stable.
This allows to create a visual lexicon before the ac-
tual video classification is performed. The classifica-
tion performance based on video alone depends on the
lexicon size. As units from a larger vocabulary are on

average semantically more specific than units from a
smaller one, the specificity of video-words obtained
from the larger vocabulary is compensated by shorter
video words.

Classification based on speech outperforms all other
single modalities. Combining speech with non-speech
audio improves classification. Classification is further
improved by supplementing speech and non-speech
audio with video words. Optimal F-scores range be-
tween 62% and 94% corresponding to 50% - 84%
above chance.

The results, that were obtained exclusively on non-
speech audio, are disappointing. Furthermore the clas-
sification on non-speech audio does not benefit from
higher ordern-grams. This suggests that there are no
regularities in the temporal combination of audio units
at any of the timescales that we have considered.

We therefore think that the audio features, that we
exploited (spectrum flatness and spectrum envelope)
were not useful for our approach. The classification
performance based on non-speech audio may improve
when different low-level features are used for the gen-
eration of audio words. Future research will deal with
the improvement of non-speech audio features.

Although non-speech audio words yield poor results
as a single modality they are beneficial when com-
bined with syllablen-grams. This suggests that it can
be useful to base speech classification not solely on
linguistically defined features. Especially when the
speech data was sampled under realistic conditions
and contains background noise and other non-speech
signals, non-speech audio seems to be beneficial.

The major disadvantage of our approach is the need
for a semantically annotated corpus ofAV -scenes. Its
major strength, however, is that it yields a high-level
semantic description ofAV -documents. The genera-
tion of the visual and non-speech audio vocabularies
requires a lot of effort as well as the training of the
SVMs. The vocabularies however can be used for a
long period time as figure4 suggests, and we suppose
that this also holds for trained SVMs. Training the
classifier and generation of the vocabularies can there-
fore be done off-line from time to time. The training
phase, however, is fast. Our method yields a high-level
semantic description at low cost in the classification
phase, and this is its benefit compaired to conventional
techniques that use audio and visual information di-
rectly from the news stream.

Our Approach can be used to represent theAV -
documents in a semantic space. To this end modify the
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classification step of theSVM and interpret the value
v = wx + b in equation5 as a vote for the respec-
tive class. This generates a semantic space whose di-
mensions correspond to the degree of membership to
each of the classes that have previously been learned.
Such a construction of a semantic space yields a se-
mantically transparent description of the multimodal
documents in contrast to other techniques like (proba-
bilistic) latent semantic analysis.[LMP04, Leo05]

Future research will deal with the possibility to learn
a classifier on one modality in order to classify an-
other. This has successfully been done with written
and spoken documents [PLL+02] and we suppose that
it can also be applied to speech, video and non-speech
audio. The procedure is as follows: train a classifier
on speech, classifyAV -documents using this classifier.
The result is a corpus of semantically annotatedAV -
documents that can be used in order to train a clas-
sifier for video or non-speech audio. Large corpora of
semantically annotated written texts are available from
the news agencies. They could be used in order to gen-
erate a training corpus for multimedia classification.
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