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Abstract of-words approach. Support vector machines are used
for supervised classification in a 1 vs setting. Clas-

Audio-visual documents obtained from Germawn Sification based on speech outperforms all other single
news are classified according to ttrerc topic cat- modalities. Combining speech with non-speech audio
egorization scheme. To this end usual text classifiiProves classification. Classification is further im-
cation techniques are adapted to speech, video, Bfyed by supplementing speech and non-speech au-
non-speech audio. For each of the three modalitg With video words. Optimal F-scores range between
word analogues are generated: sequences of syllaBé and 94% corresponding to 50% - 84% above
for speech, “video words” based on low level col&hance. The optimal comblnatlon_of modalities de-
features (color moments, color correlogram and coR§nds on the category to be recognized. The construc-
wavelet), and “audio words” based on low-level spei¢en of audio and video words from low-level features
tral features (spectral envelope and spectral flatnd¥§)ide a good basis for the integration of speech, non-
for non-speech audio. Such audio and video woRRE€ch audio and video.

provide a means to represent the different modalities in

a uniform way. The frequencies of the word analogugsy \vords:  Audio-visual content classification, sup-

represent audio-visual documents: the standard Bgs yector machines, speech recognition, integration
of modalities.

Digital Peer Publishing Licence
Any party may pass on this Work by electroni¢ 1 |ntroduction
means and make it available for download under

the terms and conditions of the current version cgontent processing of speech, non-speech audio and
of the Digital Peer Publishing Licence (DPPL). jideo data is one of the central issues of recent re-
The text of the licence may be accessed and | search in information management. During the last
retrieved via Internet at years new methods for the classification of text, au-
http://www.dipp.nrw.de/ : dio, video and voice information have been developed,
First presented at the International Conferencebut Multimodal analysis and retrieval algorithms es-
on Content-Based Multimedia Indexing 2003, pecially towards exploiting the synergy between the
extended and revised for JVRB various media is still considered as one of the major
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challenges of future research in multimedia inform&antage is that they do not accommodate human inter-
tion retrieval LSDJO€}. The combination of featurespretation.

from different modalities should lead to an improve- Thus as proposed bi.€007 each element of a par-
ment of results. We present an approach to superviggign,i.e. a disjoint segmentation, of the feature space
multimedia classification that allows to benefit frorfan be considered as a unit — sign — of the audio-
the joint exploitation of speech, video and non-speegiual code whereas the partition itself is the respective
audio. vocabulary of audio or video-signs. The visual vocab-
We use low-level features such as color correlokaries that we create armt sets of elementary sym-
grams, spectral flatness, and syllable sequences fortbks, but abstract subsets of the feature space, which
integrated classification of audio-visual documents.defined by the attribute values of visual low-level
The novelty of our approach is to process non-spedehtures. They have nothing in common with visual
information in such a way that it can be representgdcabularies that have been used elsewhE@JD%
jointly with linguistic information in a generalisedfor visual programming purposes. Instead they resem-
term-frequency vector. This allows for subsequeble to what is called a mood chart in the area of visual
processing by usual text-mining technigues includinlgsign RPWO04.
text classification, semantic spaces, and topic-maps. The reason for using an automatically generated vo-
Support Vector MachinessyM) have been ap-cabulary inducing a set of artificial (and therefore in-
plied successfully to text classification tasd®#@98 explicable) concepts is that detecting a wider set of
DPHS98 DWV99, LK02]. We adapt commorsvm concepts other than human faces in images or video
text classification techniques to audio-visual doc&cenes turned out to be fairly difficult. LewdwO(]
ments which contain speech, video, and non-spe&tiowed a system for detecting sky, trees, mountains,
audio data. To represent these documents we applydrgss, and faces in images with complex backgrounds.
bag-of-words approach which is common to text clagan, et al. EGLO4] used multi-level annotation of nat-
sification. We generate word analogues for the thregal scenes using dominant image components and se-
modalities: sequences of phonemes or syllables foantic concepts. Li and Wang\WO03] used a statisti-
speech, “video-words” based on low level color fegal modeling approach in order to convert images into
tures for video, and “audio-words” based on low-levéeywords. Rautiainen, et aREP"03] used temporal
spectral features for general audio. gradients and audio analysis in video to detect seman-

We assume that there is a hidden code of audH§ CONcepts.
visual communication. This code cannot be made ex-The non-speech audio vocabularies that we create
plicit, it consists of a tacit knowledge that is shared agéie not a set of elementary motifs of harmonic stereo-
used by the individuals of a communicating socieffyPes, but abstract subsets of the feature space, which
Furthermore we assume that, for the purpose of sijpdefined by the attribute values of acoustic low-level
sequent classification, the unknown hidden code dgatures. Our corpus of audio-visual documents con-
be substituted by an arbitrary partition of the featufésts of news recordings which contain very few seg-
space. Our approach is inspired by feaone recog- ments that could be called musical in a narrower sense.
nition technique which is an alternative to standardherefore automatic music transcription as for exam-
speech recognition for classification purposes. Fend#@ in [CLL99] is not appropriate for our material.
recognition has been done successfully by HarbeckOne further reason for the application of non-speech
[Har0]] for the speech domain. Instead of using a staaddio and video signs is that we want to take into ac-
dard speech recognizer, which recognises phoneroesnt the entire document while preserving the essen-
— i.e. areas in the feature space that are definedtiay information present in small temporal segments.
linguistic tradition — a cluster analysis is performed;hus mapping short time intervals to video or audio
which segments the feature space imdata driven signs as prototypical representations seems to be a
fashion. The recognized fenones serve as analogpesnising approach for the representation of audio-
to phonemes and are forwarded to a subsequent clasdal scenes. Finally the application of audio and
sification procedure. The advantage of fenones owédleo signs is an integrated and successful approach to
phonemes is that they can be calculated even if thére fusion of speech, video and non-speech audio. We
is no a priory knowledge of the language and condbus present a theoretical framework for the combina-
quently of the code under consideration. Their disatibn of audio and video information. This is currently
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considered as a challenging tatlsDJO4. Tablell shows the distribution of topic classes in the
In the next chapter we describe the corpus of audiprpus. For convenience we added two classes “ad-
visual documents that was utilized for content classiertisement” and “jingle” to the 17 top level classes
fication. Feature extraction and the representationadtthe IPTC-categorization. The number of documents
audio-visual documents in the classifier's input spaitethe classes total more than 693. Some documents
is described in section 3. In section 4 we specify theere attributed to two or three classes because of the
classifier and its parameters. Results are presentedritbiguity of their content. For example, audio-visual

section 5 and in section 6 we conclude. documents on the Israel-Palestine conflict often were
categorized as belonging to both “politics” and “con-
| Categories and number of documents | flicts”.
i:)sl,lltlcces igg ziusr;];r;rlnterest gg The size _of the classe_s_ in the auo_lio-visual corpus
advertisement 119 | culture 55 varies considerably: “politics” comprises 290 gudlo-
SpoTts 91 | jingle 55 visual documents whereas “rellgloh" coqtalns just 4.
confiicts 85 [ health 19 We only used those seven categories with more than
: . 45 documents (shown in the left column of tadle
economy 68 ermronmental Issug 17 for classification experiments. As will be described
labour 49 Ie|§ure 15 in section 4 we trained a separate binary classifier for
science 13 each of these seven classes. All documents of the small
education 10 categories (less than 45 documents) were always put in
wea_lth(_ar 8 the set of counter-examples.
social issue 6
religion 4 In Figurel'the document frequency, i.e. the number

of documents in which a given sign occurs, is calcu-

Table 1: Size of IPTC-classes in terms of number Qfteq for different audio and video signs. Document
documents. Only those classes, which contain M@Equency is a term weight that is commonly used in
than 45 documents (left column) were considered. oyt mining applications in order to quantify how good
a given term serves as an indicator of a document's
content. A term that occurs in all documents of a cor-
pus is not considered as a useful indicator, whereas
a term that occurs in few classes is supposed to be
specific to the document’s content. It can be seen
The data for the audio-visual corpus was obtaint?:dz Ltr??:;ufn?y? \\//\/IE:::? ngZsh?r\]/smaunsffdul Iu :‘?)rd((:)gr?-
from two different German news broadcast statlor{%. t classification. The non-speech audio signs show

N24 and n-tv. The audio-visual stream was segmente L
a less favourable pattern, rendering it inferior for con-

manually into news items. This resulted in a COTPYEnt classification: most of the audio signs occur in

that consists of 693 audio-visual documents. Docu- )
~_more than a quarter of the documents. Some audio
ment length ranges between 30 sec. and 3 minutes. . .
. . . S|gns occur in nearly every document. As mentioned
The semantic labeling of the news stories was dog

manuall . L (?fore the whole corpus comprises 693 documents.

y according to the categorization scheme 0

the International Press Telecommunications Councilln the same fashion as a speech recognizer has to be
(IPTC) (see http://www.iptc.org). The material frontrained in order to acquire a model of the speech to be
N24 consists of 353 audio-visual documents and caecognized, the vocabularies for video and non-speech
ers the period between May 15 and June 13, 2002 @udio have to be generated from a training corpus. In
cluding reports from the World Cup soccer tournameaitder to obtain significant results the training data has
in Korea and Japan. This event can be considered@be different from the data to be classified. There-
semantically unique. It does not appear in the traifore the audio-visual corpus described above wais

ing corpus for generating the audio-visual “vocabulansed for the generation of the visual and non-speech
ies”, which were obtained from tv recordings of Ocsocabulary, with the exception of some control exper-
tober 2002). The data from n-tv comprises 340 daents marked as “corpus” that are presented in fig-
uments and covers the last seven days of April 20@2e 3 and4.

2 The Audio-Visual Corpus
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Figure 1. Rank distribution of document frequency of video and audio signs.The left panel shows the
document frequency of the visual signs generated from the thee low level features described ir8 s dtlom
right panel shows the document frequency for two audio features described in|éti&izes of the visual
and acoustic vocabulary are 400 and 200 signs respectively.

3 Feature Extraction views, and were thus similar to speech occurringun
news of our corpus.

The feature extraction procedures for each of the threerne audio track of each audio-visual document was
modalities speech, video and non-speech audio aresiﬁeaker segmented using thes algorithm [TG99.
dependent from each other. As IRUL*0Z] sylla- Breaks in the speech flow were located with a silence
bles are stringed together to form terms, that do n@itector and the segments were cut at these points in
necessarily correspond to linguistic word boundarigsrder to insure that no segment be longer than 20 sec-
Video signs and non-speech audio signs are defirgfis. However, the acoustic signal was not separated
as subsets of the respective feature space. SequefgSspeech and non-speech segments. Therefore the
of video signs are referred to agleo words and se- gutput of the speech recognizer also consists of non-
quences of non-speech audio signs are calledio sense syllable sequences generated by the recognizer
words during music and other non-speech audio.

3.1 Speech Number of types (2nd line) and tokens (last line)
of syllablen-grams

The automatic speech recognition systexsR) was [, =1 n=2| n=3| n=4| n=5] n=6
built using theisip (Institute for Signal and Infor- [ 3766 71505153789177478182492183707

mation Processing) public domain speech I’GCOgI’]itiOl]_89894 189212188532187853187175186497
tool kit from Mississippi State University. We im-

plemented a standambRr system based on a Hiddedable 2: Number of syllabler-grams in the audio-
Markov Model. TheAsRr used cross-word tri-phonevisual corpus. The number of syllabtegrams in the
models trained on seven hours of data recorded froumning text (tokens) as well as of different syllalle-
radio documentary programs. These included bgtams (types) are displayed.

commentator speech and spontaneous speech in inter-
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The language model was trained on texts whichFirst the video data was split into individual frames.
were decomposed into syllables using the syllabificks reduce the huge amount of frames, only one frame
tion module of theBossiIl speech synthesis systerper second of video material was selected. This could
[SWHT0Q]. Exploratory investigation allowed us tdbe done because the similarity between neighbouring
determine that 5000 syllables give good recognitidames is usually high. In this manner the frame count
performance. The syllable language model was a sylas reduced by approximately a factor 3. After that,
lable tri-gram model and was trained on 64 milliothe three low-level features were extracted from the
words from the German dpa newswire. The advantageluced set of frames and the buoy generation method
of using a syllable-based language model instead dMal02] was applied to their respective feature spaces,
word-based model is that words can be generated frgemerating a disjoint segmentation. In this way sets of
syllables on-the-fly which leads to reduction of vocalprototypical images were obtained for each of the three
ulary size, less domain dependency and therefore lEsgtures. These sets are the visual vocabularies and
out-of-vocabulary errors. A syllable base languadeeir elements are the video signs. Visual vocabularies
model is especially useful when theRr is applied to of the size of 100, 200, 400 and 800 video signs were
a language which is highly productive at the morphoreated.
syntactic level, like German in our cadeHP"02)]. _ _ _

From the recognized syllables-grams ( < n < ]Number video sigm-grams in theav -corpus \
6) were constructed in order to reach a level of seman- n=1n=2n=3n=4n=5n=6
tic specificity comparable to that of words. The use of | types| 363 5303 6947 6749 6380 59671
n-grams also makes it possible to adjust the linguis/ | tokens 906Q 8378 7696 7128 6617 6128
tic units appropriate to the trade-off between semantic | types| 363 5493 7005 6793 6421 6003
specificity and low probability of occurrence, which is B | tokens 906Q 8378 7696 7128 6617 6128
especially important when document classes are small. | types | 298 5050 6909 6789 6416 5997
From previous experiments dextual data we have | C | tokens 9060 8378 7696 7128 6617 6128

observed that unit size is among the most importaint

determinants of the classification accuracy of supp %fble 3 The number of running WOde (tokens) and of

. T different video words (types) is displayed for a vocab-
vector machinesHLL™02). . . ) )

. . . ulary size of 400 video signs based on different fea-
As the number of syllablex-grams in the audio- i i
. . - . tlflres, A: moments of 29 colors, B: correlogram of 9
visual documents is large, a statistical test is used 9 ,
- . L . colors, C: wavelet of 9 colors

eliminate unimportant ones. First it is required that
each term must occur at least twice in the corpus. In
addition, the hypothesis that there is a statistical rela-

tion between the document class under consideratio To represent the video scenes of the audio-visual
! W u ass Unde ! &o'?pus the video stream is first segmented into coher-
and the occurrence of a term is investigated by’a

- L ) o ent units (shots). Then for each shot a representative
statistic. A term is rejected when ifg statistic is be- ( ) P

. . image is selected, which is called tkey frameof the
low a threshold). The values o used in the experi- ., " 10 segmentation is done by algorithms mon-
ments aré) = 0.1 andf = 1.

itoring the change of image over time. Two adjacent

frames are compared and their difference is calculated.
3.2 Video The differences are summed, and when the sum ex-

ceeds a given threshold a shot-boundary is detected,
In the same way as a speech recognizer has toape the key frame of the shot is calculated. For each
trained in order to learn a vocabulary of phonemshkot there are three low-level features, which are ex-
(acoustic model) and how they are combined to formacted from its key frame: first and second moments
syllables or words (language model), a visual vocabof- 29 colors, a correlogram calculated on the basis
lary has to be learned from training data. The generd-9 major colors, and a wavelet that was also based
tion of such a visual vocabulary was done on a training 9 major colors. These features where chosen be-
corpus of video data from recordaay news broad- cause they combine aspects of color and texture. Each
casts. This training corpus is different from the coof the three visual features is mapped to the nearest
pus described in the preceding section. It containsvditleo-sign in the respective visual vocabulary. From
hours of video sampled in October 2002. the video signsp-grams { < n < 6) were generated
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by stringing video signs together according to their seH\Iumber of audio-sigm-grams in theav -corpus \
guence in the audio-visual corpus. Thesgrams are n=1n=2n=3n=4n=5/n=6
also referred to as “video words”. types 50 2377 54kl 175K 246K 280K
As mentioned above, the results presented in the pgA| tokens 364k 364K 363k 363k 362K 361K
per were obtained by using visual vocabularies that | types 50 2500 79K 249K 321K 343K
were generated from a training corpus of 11 hours qu tokens 365K 364K 363k 363K 362K 361Kk
video in October 2002. Note that the audio-visual cor-
pus to be classified was sampled three to six monti&Ple 4:Number of audio words in the audio-visual
before the training corpus, in the period between ApfPrPus. The number of running words (tokens) and of
and June 2002 (see sectigj In order to get an in- different words (types) are displayed for a vocabulary
sight into the temporal variation of the visual vocab§ize of 50 audio signs of 4-frame segments based on
lary of the communicating society, we generated t§0 different features, A: spectral envelope, B: spec-
additional visual vocabularies. One was drawn frof@l flatness.
the test corpus itself (before October 2002). The other
was created from January 2003 (three months after Oc-
tober 2002). Interestingly, the comparison of resuksidio features, mean and variance of spectral flatness
based on the different vocabularies shows little differd spectral envelope were calculated and the buoy
ence. (see tabi4). generation method/bl02] was applied to their feature
spaces, generating a disjoint segmentation. In this way
sets of prototypical non-speech audio patterns were
obtained for each feature. These sets are the acoustic
8cabu|aries and their elements are the respective non-

3.3 Non-Speech Audio

The low-level audio features that we used were auc“

spectrum flatness and audio spectrum envelope assé)ee-eCh audio signs. Vocabularies of 50, 100 and 200

scribed inMPEG-7-Audio. Audio spectrum flatnessaUd'O signs were created for audio signs of 4, 8 and 16

was measured for 16 frequency bands ranging fr(;rr%me segments respectively. We construgram se-

250 Hz to 4 kHz for every audio frame of 30 mse .uencesﬂ < 6) from these acoustic units by stringing

The audio spectrum envelope was calculated for i%nsecutlve_ audio signs together. This Ieads_to non-
frequency bands ranging from 250 Hz to 4 kHz pl&peeoh audio words of up t_o rqughly 3_sec:, V.\./hlcnh cor
additional bands for the low-frequency (below 250 H%f sponds_to the psychologlcql mtegra_tlon trRepey
and high-frequency (above 4 kHz) signals. r the typical length of a musical motif.
Exploratory investigation allowed us to conclude
that sensible sizes of the acoustic vocabulary vary - The Classification Procedure
tween 50 and 200 audio signs. Mean and variance
were calculated for the features of 4, 8 and 16 cof-1 Preprocessing

secutive audio frames. We suspect that units of :I'Re feature extraction described in the preceding sec-

audio frames (=480msec) enable us to capture (ngn- . )
.fion resulted in sequences of syllablegrams, video

linguistic) meaning-related properties of the audio si lords and non-speech audio words for each audio-

nal. This duration corresponds to a quarter-note visual document. The notion “term” is used here for
alegretto temporprn. = 120). Shorter units of 8 au- :

. : of the three units. For each document a vector of
dioframes (240msec) correspond to the typical len %Hy .
ounts of terms is created to form a term-frequency

of a syllable — in conversational English nearly 80% .
. vector. The term-frequency vector contains the num-
of the syllables have a duration of 250 msec. or less .
: -ber of occurrences for eaclrgram in a document.
[WKMG98] — as well as to the duration of the echomi. o .
. herefore each audio-visual documeft is repre-
memory, which can store 180 to 200 msgtug79. sented by its term-frequency vector
Units of the length of 4 audio features were also y a y
considered. They roughly correspond to the average ¢ — (. f(wy, d;) o f(wn, di)) (1)
length of a phoneme.
Generation of the non-speech acoustic vocabulavizerer; is an importance weight as described below,
was done on the same training corpus that was alspis the j-th term, andf(wj;, d;) indicates how of-

used for video sign creation (October 2002). For batitn w; occurs in the video sceng. Term-frequency
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vectors are normalized to unit length with respect bog itself an efficient and accurate text classification

L. In the subsequent tables the use of these norntathnique Joa98 DPHS98 DWV99, LKO2]. Like

ized term-frequencies is indicated by “rel”. The vectarther supervised machine learning algorithmssem

of logarithmic term-frequencies of a video scehés works in two steps. In the first step — thining

defined as step — it learns a decision boundary in input space
from preclassified training data. In the second step —

L = (Tl log(1 + f(w1, di)),.. 2) the classificationstep — it classifies input vectors ac-
oy rplog(1 4 f(wy, di))) cording to the previously learned decision boundary.

o _ _ _ A singlesupport vector machine can only sepatate
Logarithmic frequencies are normalized to unit lengthssses — a positive clasg & +1) and a negative
with respect tal,. Other combinations of norm andy|ass §=—1).

frequency transformation were omitted because they

appeared to yield worse results. In the tables below o
the use of logarithmic term-frequencies is indicated by
“log”.
Importance weights like the well-known invers .3 o
document frequency (see figut} are often used in
text classification in order to quantify how specific a ol ass +1

given term is to the documents of a collection. Here
however another importance weight, namely redun-
dancy, is used. In information theory the usual defini- = O
tion of redundancy is maximum entrofy¢ N) minus /2SS -1

. W x+b<- 1 O
actual entropy. So redundancy is calculated as follows:

W x+b>1

epar ati ng hyperpl ane
W x+b=0

consider the empirical distribution of a term over the o
documents in the collection and define the importance
weight of termwy, by Figure 2:Operating mode of a Support Vector Ma-

chine. ThesvM algorithm seeks to maximise the mar-

gin around a hyperplane that separates a positive class
d;) lo f(wy, di) 3) (marked by circles) from a negative class (marked by
k) flwg) squares).

e = lo N+§:f(wk’

wheref (wyg, d;) is the frequency of occurrence of term
wy, in document; and N is the number of documents
in the collection. The advantage of redundancy ove?
inverse document frequency is that it does not simply
count the documents that a type occurs in, but takes ¢ = {(x1,91), (%2, 92), -, (%6, 90) }

into account the frequencies of occurrence in each of ) o

the documents. Since it was observed in previous wéiSize! from a fixed but unknown distributiop(x, y)
[LKO2] that redundancy is more effective than inver&€scribing the learning task. The term-frequency vec-

document frequency, two experimental settings dRSX: represent documents apde {—1, 41} indi-
considered in this paper: term frequencjtsoy., d;) cates whether a document has been labeled with the

are multiplied byr,, as defined in equatiorB) (de- positive class or not. Thevm aims to find a decision

noted by “+” at column “red” in subsequent tables); M€
term frequencies are left as they arg:= 1 (denoted he:x — {-1,+1}

by “—"). For subsequent classification an audio-visual - -
documentl; is represented bi or 1, according to the that classifies documents as accurately as possible

parameter settings. based on the training st.

The hypothesis space is given by the functions
f(x) = sgnwx + b), wherew andb are parameters
that are learned in the training step and which deter-
A Support Vector Machine svM) is a supervised mine the class separating hyperplane. Computing this
learning algorithm that has been successful in prdwperplane is equivalent to solving the following opti-

In the training step the following problem is
Ived: Given is a set of training examples

4.2 Support Vector Machines
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mization problemYap9§ Joa02: where g(-) is the sum or the maximum or another
¢ monotone function of its arguments. We have exper-
minimize:  V(w,b,&) = lww + CZ& imented with different settings of this kind but with
2 = little success.
subject to: V{_; : yi(wx +b) > 1—¢& It is well known that the choice of the kernel func-
V6> 0 tion is crucial to the efficiency of support vector ma-
=lost= chines. Therefore the data transformations described
The constraints require that all training examples aabove were combined with the following different ker-
classified correctly, allowing for some outliers symmel functions:
bolized by the slack variablgs. If a training example
lies on the wrong side of the hyperplane, the corre-
spondingg; is greater than 0. The facter is a para- K(xi, %)) = % - x; _
meter that allows for trading off training error against ® 2nd and 3rd order p(C)lIynomlal kernel (P(d))
model complexity. In the limiC—oco no training er- K (xi, %) = (xi - x;) d=23
ror is allowed. This setting is called hard margim. * Gaussian rbf-kernel (R{)

e Linear kernel (L)

A classifier with finiteC' is also called a soft margin K(xi,x;) = el y =0.2,1,5
Support Vector Machine. Instead of solving the above ® Sigmoidal kernel (S)
optimization problem directly, it is easier to solve the K(xi,x;) = tanh(x; - x;) ©)
following dual optimisation problenMap9§ Joa0%:
d P P Maps4 4 In some of the experiments these kernel functions
minimize: were combined to forrcompositekernels, which use
y ¢ ¢ : . )
1 different kernel functions for each modality (for ex-
W) = =3 o+ 5 D2 Yi%eXiX;  amplel for speechR(1) for video andP(3) for au-
i=1 i=1j=1

dio). Formally a composite kernel is defined as fol-
lows: Let the input space consist @f; speech at-
- tributes, L, video attributes, and., audio attributes,
0<e;<C which are ordered in such a way, that dimension 1 to
All training examples witha; > 0 at the solution Ls correspond to speech attributes, dimensibps- 1
are called support vectors. The Support vectors &els + L, correspond to video attributes, and dimen-
situated right at the margin (see the solid circle agPnSLs+L,+1t0 L+ L, + L, correspond to audio
squares in figur@) and define the hyperplane. The dédttributes. Letr/'(-) be the projection from the input
finition of a hyperplane by the support vectors is esp#ace to its subspace spanned by dimensidnd. A
cially advantageous in high dimensional feature spag@nposite kernel that uses kerrf€| for speech k>
because a comparatively small number of paramettéisvideo andK’ for audio is defined as
— theas in the sum of equatio® — is required.

In the classification step an unlabeled term- Kk, ko k5 (%i, %) = K1 (”}4 (Xi)ﬂis (Xj)>

¢
subject to: > i =0 (4)

frequency vector is estimated to belong to the class + K2(7r£3+i (x;) Wfii (Xj>)
stLy ) s v
§ = sgriwx +b) ®) + Ky(nfrtber) ) kit (%)

Heuristically the estimated class membershigorre-

sponds to whethex belongs on the lower or upper sidd "€ idea behind the construction of composite ker-
of the decision hyperplane. Thus estimating the cldi/S IS that the different semiotic and cognitive con-
membership by equatioB)consists of a loss of infor-ditions for speech, video and audio imply different
mation since only the algebraic sign of the right-har{fometries in the respective factor spaces. l.e. we
term is evaluated. However the valuewof= wx + b treataudio, video, and speech differently although we
is a real number and can be used for voting agents, f@Present them in the same input space. A kernel is

a separatsvM is trained for each modality resulting"@/led ahomogeneoukernel if K, = K> = Kj;. The
in three valueSipecen, Vvideo AN Vayaio- INstead of results of experiments with composite kernels were,

calculating equatiorB) we calculate however, also disappointing and suggested that homo-
geneous kernels are the best solution to the integration
g = Sgr(g(vspeeciu Vvideos Uaudio)) of modalities.
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We think that this negative result is interesting, bealculated as

cause the fact that the different modalities speech, 9
video and non-speech audio do not require different F = 0
treatment suggests that the respective semiotic systems prec © rec

are not as independent as it is often supposed. whererec andprec are the usual definitions of re-

call and precisionMS99. Since a 1-ton scheme
_ o ~was used for classification the results of classifying
4.3 Settings for Classification of Audio- each class against all other classes are presented in in-
Visual Documents dividual rows. All classification results presented in
) ] . this section were obtained by tenfold crossvalidation,
We use a soft margin Support Vector Machine with agq e the vocabulary is held constant. This makes the
symetric classification CQSI Inlavs setting, |.e_. for results statistically reliable. Crossvalidation involving
each class asvm was trained that separates this clagg . jary generation is unnecessary because the data

against all other classes in the corpus. The cost faclgf ,se for the generation of the vocabulary is sepa-
by which the training errors on positive examples OYlste from the multimedia corpus

weigh errors on negative examples is s te 2 #pos’ Note that a correlation matrix between features from

wheregpos ands#neg are the number of positive andyitterent modalities cannot be presented in a meaning-
”ega""e examples F?Spec“_"?'y- This means that ?[]Pway. Each of the three modalities is represented by
weight of false positive training errors is larger folrnore than 1000 features (see tz2J& andd) and this

smaller classes, and in the cagecg = #pos POS- s \would lead to a correlation matrix with more than
itive examples on the wrong side of the margin a9 entries

given twice the weight of negative examples. The
trade-off between training error and margin was set
C = ¢, |||~ which is the default in thesvm
implementation that we used. The results on speech-based classification for the op-

It is well known that the choice of kernel functimal combinations of parameters are presented in in
tions is crucial to the efficiency of support vector mdable5. From the speech recognizer output syllable-
chines. Therefore the data transformations describedrams were constructed far= 1 ton = 6. Most
above were combined with the homogeneous kerg&lsses were best classified with rbf-kernels (cf. ta-
functions defined in equatioB); ble5).

éc.)l Classification Based on Speech

]Results based on speech

categoryinjred| 6 |transflkernel F-score
5 Results justice |1| + [1.00 rel | R(1)| 65.0
he followi bl h he classificati | economy2| + (1.00 rel | P(2)| 59.3
The fo owing ta ess owt e classi |cat|or_1 resultson  =our 1l + 1100 rel R(1)| 853
the basis of the different modalities. A “+” in the col- —
A . . politics |2| + |1.00 rel |[R(0.2) 74.7
umn “red.” indicates that the importance-weight re-
. RN ) sport |1| + (1.00 rel | R(5)| 80.3
dundancy is used, and “~" indicates that no impor- .
g . N conflicts|2| + (1.00 rel |R(0.2) 73.5
tance weight is used. The values of the significance advertis|1 — |1.00 Tog [R(0.2) 85.0
thresholdd (used exclusively for syllables in speech : : 9 g -

experiments) aré = 0.1 and¢ = 1. The col- Taple 5: Results of the classification on the basis of
umn “transf.” indicates the frequency transformatiogy|japle sequences.

that was used, “log” stands for logarithmic frequen-

cies with Ly-normalization and “rel” means relative

frequencies (i. e. frequencies wifh -normalization).  Note that only sequences of one or two syllables
The next column “kernel” indicates the kernel funawvere used for classification. This replicates an ear-
tion: L is the linear kernelS is a sigmoidal kernel, lier result PLLT02]: The optimal unit-size for spoken
andP(d) and R(~y) denote the polynomial kernel andlocument classification is often smaller than a word
the rbf-kernel respectively. The last column shows tfi@ German the average word lengthi.8 syllables)
classification result in terms of thi-score, which is especially under noisy conditions.
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5.2 Classification Based on Video

Tablel6 shows results based on a vocabulary of 100 &1
video signs, tabl& those for 400 video signs. The
length of the video words (i.e. the length of the 3
gram) is given in column 2 and the accuracy is pre-
sented in column 6. In the case of a visual lexicon of
100 video signs the units used for classificationrare &
grams with a size varying from = 1 ton = 5. This
means that these units are built using one to five video- g -
shots. Those categories that are classified on the basis
of shot-unigrams show relatively poor accuracy.

100
200
400
800
corpus

BEROQ

7

\ N
N N

(8

\!

N N

39

]F-scores obtained using small visual vocabqlary

AR T
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ALY

Wz
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AMIIINS.

ALY

A Y

V7272222222

categoryn|red/transf|kerne F-score o

justice 4| — Iog S 46.4 labour economy conflicts sport justice politics
economy3| — | rel | R(5) 29.1

labour |2| — | log S 41.6

politics |4| — | rel |R(1.0 48.5 Figure 3: Classification performance vs. vocabu-
sport |5 + | rel |R(0.2 51.9 lary size. Different classes show different behaviour
conflicts|2| — | log [R(0.2 35.0 when the vocabulary size is changed. A vocabulary
advertis.|1| — | log | R(1) 85.7 size of 400 video signs seems to be optimal. Note that

the visual vocabulary which was obtained from the test

ulary of 100 video signs

We therefore believe that we have detected regulars

classification results compared to the others.

We attribute this to the fact that the semantic speci-

ities in the succession of video-units, which revealf%ity of n-grams increases with. As units from a
Kind of temporal (as opposed to spatial) wdeo—syntelérger vocabulary are on average semantically more

Rbf-kernels seem to be the most appropriate for cl% -
sification on the basis of video-words when a small s

of video signs is considered.

ecific than units from a smaller one, the specificity
of video-words obtained from the larger vocabulary is
compensated by a decreaseiejram degree. Results

[F-scores obtained using large visual vocablary for optimal parameter settings and different sizes of

the visual vocabulary are presented in figir&ocab-

jcua;:?gg ryrlz re_d tri)r;sf ke;ne F;lszclgre ularies of 4QO video signs yieIQed the best res:ults on
economyl| + | Tog | L 312 average. Th|§.vocabula%ry size is aI;o used for integra-
labour |3| — | Tog | S 312 tion of modalities described in sectiéwl.

politics |2 — | rel S 53.4 One might argue that the collection of a visual vo-
sport 4] + | rel | R(5) 53.8 cabulary at a point in time different from the test cor-
conflicts/ 1l = | rel | L 308 pus is flawed because typical images cannot be present
advertis|5| + | rel | R() 91.2 in both corpora. However our principal assumption

was that the video words reveal a kind of implicit code,

Table 7:Classification results based on a visual vocawhich is known to the individuals of a given society.

ulary of 400 video signs

The assumption of the existence of such a code im-
plies that it is shared by the members of the society and
functions as a means to convey (non-linguistic) infor-

With more video signs to choose from, the perfofnation. To fulfil this communicative function a code
mance increases significantly (with the exception gfay not vary too quickly and should apply to past and

the categories “labour” and “justice”), and thegram fyiyre alike. As can be seen in figideexperimental
length decreases.

results with visual lexicons created at different times

urn:nbn:de:0009-6-7607, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 6

(summer 2002 and January 2003) did not show a con-
sistent change in performance and support the assumpsg _
tion that the vocabulary is independent from the ac-
guisition date. For the practical application this means
that once a visual vocabulary is generated it can be®
used for a long period of time.

From figureld one can see that the effect of the g -
change of the visual semiotic system is limited. This
is reflected in the results of the classification. Cat- _
egories “justice” and “sports” and to a lesser extent = |
“politics” show a decrease of performance when the
lexicon was drawn from the October material instead < -
of the corpus itself. This can be attributed to the fact
that there were salient news in these categories at the | z
time when the corpus was sampled, namely the soc- lbour  ecomomy  confiicts  sport justice poltics
cer world championship (sports) and a massacre at a
German high school (justice).

The results for the categories “economy” and “Corigyre 4:Classification performance vs. date of vo-
flicts” are nearly independent from the creation dateéglbmary acquisition. The visual vocabularies were
the visual lexicon. These categories are communicabe%erated from different training corpora which were
by visual signs that seem to be temporarily invarianigampled at different instances of time: January 2003,

The relatively good results for video classificatio@ctober 2002 and April to June 2002, denoted as “cor-
suggest that the task of supervised content clasgiis”. The figure shows that the variation between
cation of audio-visual news stories is different formlasses is larger than the variation between different
the recognition of objects on images for retrieval pUexicon creation times.
poses. News stories are not pictures of reality. They

are man-made messages intended to be received by thg, aionale behind the use of low-level video fea-

news observers. Thus the regularities between Comt%%s is not to discover the denoted message of a video-

and visual expression follow aesthetical rules rather, . :
e artefact (whether it shows for instance a person or a
than reality itself. L . o
] o ] ] car) but to reveal the implicit code which underlies its
In his semiotic analysis of images Roland Bartheg§ ynoted message. We suppose that some of the as-

distinguishes between the denoted message and a g5 of the connoted code postulated by Barthes are
noted message of a picture. In his view all imitative.fiacted in the video words.

arts (drawings, paintings, cinema, theater) comprise
two messages: @enoted messagehich is the analo- L
gon itself, and aonnoted messagenhich is the man- 5.3 Classification Based on Non-speech Au-

ner in which the society to a certain extent commu- dio

nicates what it thinks of it. The denoted message ©fassification on the basis of non-speech audio words
an image is an analogical representation (a 'copy’) igf shown in table8. The error rates are worse than
what is represented. For instance the denoted messgg8e of the other two modalities (speech and video).
of an image which shows a person is the personfhe only category which is accurately classified is “ad-
self. Therefore the denoted message of an imag&/dstisement”. Most classifications are based on audio
not based on a true system of signs. It can be consifhn unigrams, i.e. audio words that consist of only
ered as a message without a code. The connotive cgdg audio sign. Building sequences of audio signs
of a picture in contrast results from the historical @enerally does not improve the performance. This
cultural experience of a communicating society. Thgeans that, in contrast to video words, the audio words
code of the connoted system is constituted by a ugy not represent a kind of temporal syntax.

versal symbolic order and by a stock of stereotypes|, contrast to video there is no dependency between
(schemes, colors, graphisms, gestures. expressigpg of vocabulary and length agrams that form au-
arrangements of elementsRéer8d dio words. We thus conclude that, in contrast to the

corpus
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]F-scores obtained using different sizes of non-speech audio vocabulary \

50 signs 100 signs 200 signs
4 frames8 framesl6 framegd framesd framesl6 framesd frames8 framesl6 frames
justice 35.4 34.9 352 36.0 354 373 369 36.1 35.5
economy 21.1 225 228 239 235 20,6 201 240 24.5

\"2J

labour 18.9 17.0 20.6 21.8 16.8 18.6 19.6 18.2 19.6
politics 47.Q 46.9 46.1  48.4 47.3 46.9  45.7 46.7 44.9
sport 40.8 32.2 35.3 38.2 31.4 39.0 35.1 35.3 36.0

conflicts 27.8 24.9 28.9 28.2 22.1 28.9 27.2 23.9 25.4
advertis. 90.9 90.4 91.2 92.1 93.3 90.2 93.2 92.4 91.8

Table 8:Comparison of results for non-speech audio with different audio signs and different sizes of non-speech

audio vocabularies.

video words, the audio words do not reveal an implicit LargestF-scores vs. chance |
acoustic code. There is also no clear pattern of a rela- category|speecividedaudidchancé
tionship between the number of frames that form the justice 65.0 42.d 36.d 17.3
audio signs and vocabulary size as can be seen from economy 59.3 31.2 23.9 9.8

table8. However, audio signs based on 4 frames yield labour 853 31.2 21.d 7.0
slightly better results than the other frame lengths. The politcs | 74.7 53.4 48.§ 28.9
best results in average were obtained for a vocabulary sport 80.3 53.8 382 130

of 100 audio signs based on a 4-frame audio features. conflicts| 73.5 39.9 282 12.3
From exploratory experiments we decided to use a vo- advertis| 85.0 91.2 921 1741
cabulary of 50 audio signs based on 4 frames for the in-
tegration with the other media. Although non-speediable 9: Comparison of the results on single modal-
audio yielded poor results as a single modality, it ises, that were obtained with optimal parameter-
beneficial when combined with speech. settings

5.4 Integrated Classification N _ o
of modalities. A visual vocabulary of 400 audio signs

Figurel9 directly compares the error rates of all sirand a acoustical vocabulary of 50 audio signs calcu-
gle modalities. There is a clear ranking among tleged on the basis of 4 frames turned out to be optimal
three modalities, when they are employed individwhen integrating two or three modalities.
ally. Speech yields best results for most classes, andable’10 shows results of the combined modalities
video is by far better than non-speech audio. Thaten-speech audio and video. The F-scores are better
is however one exception to the disappointing resuftsn those based exclusively on non-speech audio, but
of non-speech audio. The generally superb rates of Hug better than those of single video (see t&xdad7)
category “advertisement” are likely to be caused by thed still much worse than a combination of speech
shot duration in commercial spots, which is generallyith non-speech audio or video. We conclude that the
very short. Furthermore the audio in advertisementsismbination of video and non-speech audio generally
usually compressed causing the overall energy in tthges not improve classification.
audio spectrum to be considerably higher than normalThe picture changes when video is combined with
which is reflected by the audio-features that we use&gheech. Especially the classes “advertisements” and
Another aspect is that commercials are broadcast ‘tgports” show an improvement over the single modali-
peatedly. Therefore in some cases identical spots &g for the combination of video and speech (see ta-
present in both test and training data. ble [11). Interestingly the optimal parameters have
From exploratory experiments we concluded thaihanged: sigmoidal and linear kernels perform best for
proper adjustment of the vocabulary sizes of the ddH classes — a phenomenon that extends to the inte-
ferent modalities is crucial to a successful integratigmation of all modalities — and the lengths of video
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| F-scores obtained using video and non-speech audiassification works even when the signal is so noisy

categoryn(audio)n(video)red,transf kerne| F that it cannot be understood by a human listener.
justice 1 5 + | rel S | 420 One difference between the combination of speech
economy 1 1 — | log |R(0.2) 30.1 and non-speech audio and the combination of speech
labour 3 3 — | log S | 29.8 and video is that optimak-grams for both syllables
politics 1 1 + | log |R(0.2) 51.7 and audio-signs are in most cases longer than those of
sport 1 3 — | rel |R(0.2) 51.9 the single modalities. In the case of the category “jus-
conflicts| 5 1 — [ rel [R(G)| 38.3 tice” syllablen-grams and audio words are used up to
advertis| 5 3 +log | S | 93.9 the maximal lengths{ = 6). In other words, all avail-

able information is used, but the classifier cannot find

Table 10:Results of the classification with both audioca hyperplane that is consistent with the patterns of both

words and video-words. speech and non-speech audio. A different kernel func-
tion or an adjustment of the speech and non-speech
subspace of the input space might have improved the

words and syllabler-grams is slightly changed comsituation.

pared to the single modalities (see tab&sand[7).

The combination of speech and video is especially a [-scores using speech and non-speech aUd'q
vantageous for the category “sport”, but adding non/cat€gory n | n
speech audio yields a further improvement of accurac§ate9°ryaUd'OSPeeC red, 6 |ransfikernel /”
(see tabld3). justice | 6 6 |+ (0.1 rel | R(1)|63.3
economy 1 5 | + (1.0 rel | R(5)(62.7
| F-scores obtained using video and speech | labour | 5 4 |+ 1.0 rel |R(5)[89.6
n n politics | 6 2 | + 1.0 rel |R(0.2)72.5
categoryvideaspeeclred, #|transflkerne| F sport 2 2 + |1.0 log S 835
justice 1 1 | +(1.00 log L |67.3 conflicts| 1 2 | +|1.0 log S |74.]
economy 2 2 | +1]1.00 log | S |55.1 advertis.| 1 2 | +01 log| S |92.0
labour 2 2 + |1.00 log S [84.8 o )
politics | 1 2 [ - 1100 log | L [70.7 Table 12: Results of the _classmcatlon with both
sport 3 > + 11.00 log S geg 9Jrams of non-speech audio and syllabigrams
conflicts| 2 2 + [1.00 log S 167.9
advertis, 3 ! + [1.09 log S 934 Table13 shows results of all combined modalities.

Table 11: Results of the classification with both The category “labour” benefits most from the integra-
grams of video signs and syllablegrams. tion of modalities. The combination of the modalities

speech and non-speech audio leads to improved accu-
racy compared to speech alone. Adding video yields
Tablel12 shows the results of the combined modadven better results for the classes “sport”, “labour” and
ities speech and non-speech audio. The accuracyaufvertisement”. The F-scores of “labour”, “sport”,
all classes (with the exception of “justice” and “pol‘conflicts”, and “advertisement” are better than those
itics”) improves when non-speech audio is added &b the single speech modalities (see taBje The
speech (see tabB:and9). The categories “conflicts” reason seems to be that these categories show many
and “economy” can best be classified with the comkgxplicit non-speech features which make them distin-
nation of speech and non-speech audio. guishable from others. This does not seem to be the
The result on the combination of speech and norase for other categories like politics, where pictures
speech audio has an implication to speech classifiaad sounds are not as important as words. In this last
tion in general: It can be useful to base speech clésble we have added the F-scores based on classifica-
sification not solely on linguistically defined featuresion by chance. These scores are independent of the
Especially when the speech data was sampled unaedalities used for classification and can also be com-
realistic conditions and contains background noise goatred to all other F-scores in the previous tables.
other non-speech signals. Results on fenone recognifhe optimal combination of modalities depends
tion point in the same directiotdlarOJ]. Fenone-basedvery much on the content class. There is no com-
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| F-scores obtained using speech, video, and audjio average semantically more specific than units from a

categoryn (audio)n (speech). (video) F|chancé smaller one, the specificity of video-words obtained
justice 4 5 3 62.1 17.3 from the larger vocabulary is compensated by shorter
economy 5 3 2 |58.4 9.8 videowords.

labour 4 2 4 1914 7.0 Classification based on speech outperforms all other
politics 3 3 3 72. 28.9 single modalities. Combining speech with non-speech
sport 4 4 2 87.2 13.0 audioimproves classification. Classification is further
conflicts 4 4 1 73.0 12.3 improved by supplementing speech and non-speech
advertis. 2 1 5 94. 17.1 audio with video words. Optimal F-scores range be-

o _ _ tween 62% and 94% corresponding to 50% - 84%
Table 13: Results of the classification with aUd'Oabove chance.

words (50 signs, 4 frames), video-words (400 Slgns)The results, that were obtained exclusively on non-

and sequences of syllables, compared tothe F-mea@ ‘ech audio, are disappointing. Furthermore the clas-
according to chance. The choice of parameters

) ’ . M cation on non-speech audio does not benefit from
rgstrlcted to S|gm'0|d§1I kernels, IOg‘f"”thm'C frequgrmgher ordem-grams. This suggests that there are no
cles and_ the application of term weighting aCCOrd”’fggularities in the temporal combination of audio units
to equationi). at any of the timescales that we have considered.
We therefore think that the audio features, that we

exploited (spectrum flatness and spectrum envelope)
bination of modalities that yields good results for al{ere not useful for our approach. The classification
classes. Media integration was unsuccessful for fh&rformance based on non-speech audio may improve
category “politics”, which was best classified (F=74.7}hen different low-level features are used for the gen-
on the basis of syllable bigrams. The category “jugration of audio words. Future research will deal with
tice” is best classified with video and speech: F=67 {Be improvement of non-speech audio features.
The category “conflicts” is best classified with speech ojthough non-speech audio words yield poor results
and non-speech audio (F=74.1), and so is “eCONONYL 5 single modality they are beneficial when com-
(F=62.7). The categories, “sport” (F=87.2), “labourgined with syllablen-grams. This suggests that it can
(F=91.4) and “"advertisement” (F=94.6) are best Class yseful to base speech classification not solely on

sified with all three modalities. linguistically defined features. Especially when the
speech data was sampled under realistic conditions
6 Conclusion and contains background noise and other non-speech

signals, non-speech audio seems to be beneficial.

Audio and video words constructed from low-level The major disadvantage of our approach is the need
features provide a good basis for the integration ®F a semantically annotated corpus/f-scenes. Its
modalities in order to classify audio-visual document®ajor strength, however, is that it yields a high-level
Homogeneous kernels (see sectog) are a good so- semantic description ofv-documents. The genera-
lution to the integration of modalities. The optimaion of the visual and non-speech audio vocabularies
combination of modalities depends, however, on trequires a lot of effort as well as the training of the
category to be recognized. This is an important resyyMs. The vocabularies however can be used for a
since multimodal analysis and retrieval algorithms ebeng period time as figurd suggests, and we suppose
ploiting the synergy between the various media &feat this also holds for trained SVMs. Training the
currently considered as one of the major challengeglgssifier and generation of the vocabularies can there-
of future research in multimedia information retrievdpre be done off-line from time to time. The training
[LSDJO4. phase, however, is fast. Our method yields a high-level
The visual vocabularies generated as describeds@mantic description at low cost in the classification
this paper are to a certain extent temporally stabfhase, and this is its benefit compaired to conventional
This allows to create a visual lexicon before the atechniques that use audio and visual information di-
tual video classification is performed. The classificggctly from the news stream.
tion performance based on video alone depends on th®ur Approach can be used to represent tve
lexicon size. As units from a larger vocabulary are atocuments in a semantic space. To this end modify the

urn:nbn:de:0009-6-7607, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 3(2006), no. 6

classification step of thevm and interpret the value[DPHS98]

v = wx + b in equation5 as a vote for the respec-
tive class. This generates a semantic space whose di-
mensions correspond to the degree of membership to
each of the classes that have previously been learned.
Such a construction of a semantic space yields a se-
mantically transparent description of the multimodal
documents in contrast to other techniques like (proba-
bilistic) latent semantic analysisMP04, Leo04

Future research will deal with the possibility to learn
a classifier on one modality in order to classify afPWVo9]
other. This has successfully been done with written
and spoken documenBILL02] and we suppose that
it can also be applied to speech, video and non-speech
audio. The procedure is as follows: train a classifier
on speech, classifyv -documents using this classifier.
The result is a corpus of semantically annotated £GJ95]
documents that can be used in order to train a C|£S-
sifier for video or non-speech audio. Large corpora of
semantically annotated written texts are available from
the news agencies. They could be used in order to gen-
erate a training corpus for multimedia classification.
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