
ProFormA: An XML-based exchange format for programming tasks

Sven Strickroth

sven.strickroth@hu-berlin.de

Institut für Informatik

Humboldt-Universität zu Berlin

Unter den Linden 6

10099 Berlin

Michael Striewe

michael.striewe@paluno.uni-due.de

Paluno – The Ruhr Institute for Software Technology

Universität Duisburg-Essen

Gerlingstraße 16

45127 Essen

Oliver Müller

oliver.mueller@tu-clausthal.de

Institut für Informatik

Technische Universität Clausthal

Julius-Albert-Str. 4

38678 Clausthal-Zellerfeld

Uta Priss

u.priss@ostfalia.de

ZeLL – Zentrum für erfolgreiches Lehren und Lernen

Ostfalia Hochschule für angewandte Wissenschaften

Am Exer 2

38302 Wolfenbüttel

Sebastian Becker

sebastian.becker@hs-hannover.de

ZSW – E-Learning Center

Hochschule Hannover

Expo Plaza 12

30539 Hannover

Oliver Rod

ol.rod@ostfalia.de

ZeLL – Zentrum für erfolgreiches Lehren und Lernen

Ostfalia Hochschule für angewandte Wissenschaften

Am Exer 2

38302 Wolfenbüttel

Robert Garmann

robert.garmann@hs-hannover.de

Issue 11
2015

Licence: fDPPL Any party may pass on this Work by electronic means and make it available for download
under the terms and conditions of the free Digital Peer Publishing License. The text of the license may be
accessed and retrieved at http://www.dipp.nrw.de/lizenzen/dppl/fdppl/f-DPPL_v1_de_11-2004.html.

1

mailto:sven.strickroth@hu-berlin.de
mailto:sven.strickroth@hu-berlin.de
mailto:michael.striewe@paluno.uni-due.de
mailto:michael.striewe@paluno.uni-due.de
mailto:oliver.mueller@tu-clausthal.de
mailto:oliver.mueller@tu-clausthal.de
mailto:u.priss@ostfalia.de
mailto:u.priss@ostfalia.de
mailto:sebastian.becker@hs-hannover.de
mailto:sebastian.becker@hs-hannover.de
mailto:ol.rod@ostfalia.de
mailto:ol.rod@ostfalia.de
mailto:robert.garmann@hs-hannover.de
mailto:robert.garmann@hs-hannover.de
http://www.dipp.nrw.de/lizenzen/dppl/fdppl/f-DPPL_v1_de_11-2004.html


Fakultät IV – Wirtschaft und Informatik

Hochschule Hannover

Ricklinger Stadtweg 120

30459 Hannover

Oliver J. Bott

oliver.bott@hs-hannover.de

ZSW – E-Learning Center

Hochschule Hannover

Expo Plaza 12

30539 Hannover

Niels Pinkwart

niels.pinkwart@hu-berlin.de

Institut für Informatik

Humboldt-Universität zu Berlin

Unter den Linden 6

10099 Berlin

urn:nbn:de:0009-5-41389

Zusammenfassung

Unterstützungssysteme für die Programmierausbildung sind weit verbreitet, doch gängige

Standards für den Austausch von allgemeinen (Lern-)Inhalten und Tests erfüllen nicht die

speziellen Anforderungen von Programmieraufgaben wie z. B. den Umgang mit komplexen

Einreichungen aus mehreren Dateien oder die Kombination verschiedener (automatischer)

Bewertungsverfahren. Dadurch können Aufgaben nicht zwischen Systemen ausgetauscht

werden, was aufgrund des hohen Aufwands für die Entwicklung guter Aufgaben jedoch

wünschenswert wäre. In diesem Beitrag wird ein erweiterbares XML-basiertes Format zum

Austausch von Programmieraufgaben vorgestellt, das bereits von mehreren Systemen

prototypisch genutzt wird. Die Spezifikation des Austauschformats ist online verfügbar

[PFMA].

Stichwörter: Programmierausbildung, Programmieraufgaben, Automatische Bewertung,

Grader, Austauschformat, Datenformat, Lernobjekt, e-learning

Abstract

Support systems for programming education are in widespread use. However common

standards for the exchange of general (learning) content and tests do not meet the special

requirements of programming tasks, e.g. dealing with complex submissions consisting of

multiple files or the combination of different (automatic) evaluation and assessment

procedures. Thus, due to missing interoperability, programming tasks cannot be exchanged

between systems easily despite the fact that this would be desirable due to the high cost of

the development of good tasks. In this paper, an extensible XML-based format for the

exchange of programming tasks is presented, which is already used in multiple systems.

The XML-format is available on-line [PFMA].

Keywords: programming education, programming task, task package, grading support

software, grader, exchange format, data format, learning object, e-learning

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 2

mailto:oliver.bott@hs-hannover.de
mailto:oliver.bott@hs-hannover.de
mailto:niels.pinkwart@hu-berlin.de
mailto:niels.pinkwart@hu-berlin.de
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


This article is an updated, extended, and translated version of a conference paper

presented at DeLFI’14 [St14].

1 Introduction and motivation

Introductory programming courses are part of computer science and many engineering,

mathematics as well as science curricula. These courses usually employ programming

tasks as practical exercises where students are frequently asked to write (small) programs

from scratch, to implement interfaces, or to expand existing programs for training purposes.

Programming tasks are often somewhat open-ended because it is important for students to

develop their own solutions [Ro07]. The construction of high quality (i.e., meaningful,

engaging, and challenging) programming tasks is complex, requires creativity and takes

time [SW06]. There are many aspects to consider such as learning goals, knowledge of the

students and possible solution strategies. Also assessment and timely feedback play an

important role as the students’ submitted solutions have to be evaluated or graded. Due to

the usually high number of enrolments in introductory programming classes, this results in

a high workload for the teachers if done manually.

Therefore, the idea of (semi-)automatic assessment and feedback generation to

programming tasks was born with early systems dating back to at least 1989 [Re89]. This

reduced the manual grading effort at the expense of the development of sophisticated test

procedures for a specific programming task: an automatic assessment of programming

tasks is considerably complex than evaluating multiple choice questions [AR08]. In addition

to the written description of each programming task, instructors usually need to create

automated review, feedback, test data, or sample solutions depending on the automated

grading system. Examples for automatically generated feedback are black box tests, Java

JUnit tests [JUNIT] with check for various normal and “corner” cases, or comparisons with

sample solutions e.g. for Prolog [Hü05].

The very high costs for creating sophisticated and creative programming tasks could be

significantly reduced if tasks as well as tests were re-used, ideally independently of specific

systems, and exchanged between teachers, e.g. by having a shared pool of programming

tasks for a variety of learning scenarios. Although the development of support systems for

computer education and automated graders in various programming languages has

progressed for well over ten years (cf. [Ih10] for an overview and [SMB11, SOP11, PJR12,

RRH12, Stö13] for examples of recent progress), there is no common exchange format yet.

Also, only a few systems, such as DUESIE, eAIXESSOR, JACK, Mooshak and UVa Online

Judge have or plan to have an easily accessible pool of re-usable tasks.

In particular, in systems with multiple installations, an import/export function could at least

reduce the workload by re-using tasks within these systems. Nevertheless, import or export

functionality is currently rare. It is only mentioned in publications about JACK, Praktomat,

Mooshak and ELP. In other disciplines, e.g. math or engineering, there are established

learning management systems (LMS) such as LON-CAPA [LONC] in which the worldwide

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 3

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


exchange of tasks and learning material is a central component. In this paper we propose

an interoperable XML-based exchange format (called ProFormA; based on a project name

“Programming tasks for Formative Assessment”) for programming tasks to fill this gap.

The remainder of this paper is organized as follows: In section 2 three different systems for

programming education used by the authors are described. Section 3 presents

requirements for a generic exchange format based on a literature review on published

systems, existing exchange specifications and their support for the derived requirements.

Based on these requirements the ProFormA exchange format is introduced in section 4 and

discussed in the subsequent section. The last two sections suggest some advanced usage

scenarios, future work, and draw a conclusion.

2 Three examples of programming assessment systems

This section describes three different support systems for programming education which

have been in use by the authors for several years. Each system has an isolated pool of

programming assignments. The purpose of this section is to point out the different usage

scenarios and goals of these systems which motivated us to work on a common exchange

format for programming tasks.

2.1 GATE

The Generic Assessment & Testing Environment (GATE) [SOP11, GATE] is a web-based,

open-source (GPLv3) stand-alone system which was developed at Clausthal University of

Technology in 2009. The goal for the development of this system was to improve the

programming training in Java and to support human tutors by reducing the manual

correction and semi-manual scoring effort in large lectures with several hundred students.

Additionally, the system allows for managing exercise groups. GATE is in regular use for

introductory programming classes for students studying computer science and economics

since 2009 and also for related computer science classes. In the latter case it is used as a

submission and grading system only, i.e. without employing all programming related

features.

With GATE, students can submit their solutions in digital form which can then be corrected

and scored by human tutors within the system. In order to simplify the correction process

for the tutors, it is possible to define several automatically runnable tests for programming

tasks inspecting the solutions of the students which are executed automatically after the

submission deadline. Thus, tutors do not only see the submitted program code, but also the

test results. Here, compile tests and function tests (JUnit and black-box tests) for checking

the correctness of the submitted Java programs are available. It is also possible to allow

students to request specific approved tests: Students can get automatically generated

feedback in order to improve their solutions before the submission deadline. GATE also

includes plagiarism detection algorithms (e.g. Levenshtein distance for short programs and

Plaggie [ASR06] for more advanced Java programs) to help tutors find instances of

plagiarism within all submitted solutions especially across exercise groups. Additional

feedback by tutors to students can be given through a free-text comment function. The

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 4

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


same comment function can be used by tutors to send comments about student

submissions to other tutors. Thus, it is possible to inform other tutors about a suspicion of

plagiarism or tutors can ask other tutors for help on correcting and scoring a submission.

2.2 Praktomat

Praktomat [KSZ02, PRAK] is a stand-alone, open-source (GPLv2), web-based grading

system for programming exercises. Its development started in 1998 at Passau University,

Germany. The source code was freely available since their first publication. Starting from

2011 Praktomat was redesigned and consecutively developed at the Karlsruhe Institute of

Technology (KIT), Germany.

Due to its modular test architecture, Praktomat supports numerous programming

languages such as Java, C++, Haskell, and Isabelle. Tests usually consist of a compile test

and black-box tests using the DejaGnu testing framework [DGNU]. Especially for the Java

programing language there are JUnit tests and also Checkstyle tests for testing the

adoption of style conventions available.

At Ostfalia University the Praktomat was extended by adding support for Python and

databases with SQL [KJ13]. Furthermore, the Praktomat has been embedded into an LMS

(LON-CAPA) so that it only serves as a hidden backend grading engine which is fully

configured and used via its LMS front-end [PJR12a]. It is currently employed in courses for

teaching linear algebra (using Python), databases and introductory Java where it provides

formative assessment to students.

2.3 JACK

JACK is a web-based tutoring and assessment system that can be used for programming

exercises in Java [SBG09, JACK]. It is able to provide automated grading as well as

generation of individual textual and graphical feedback for each solution submitted to an

exercise. It has been in use both for formative self-training and summative assignments for

first-year-students at the University of Duisburg-Essen since 2006 [SG13]. Students can

access JACK to download exercises and submit solution files either via a web-browser or

via a customized version of the Eclipse IDE. Feedback provided by JACK can be viewed

only via a web-browser.

With JACK, teachers define exercises via a web-browser by providing exercise meta-data

and three different types of files: Files to be edited by the students in order to solve the

exercise, files to be used but not changed by the students, and files with internal data not

visible to the students. Moreover, JACK allows teachers to define different analyses on

programming exercises that may or may not make a weighted contribution to the overall

grade for a solution and produce textual or graphical feedback: (1) Static checks include

compiler checks and rule based analysis of source code to look for desired or forbidden

code structures. Typically, solutions receive full points in static tests unless errors are

found. In case of errors, appropriate messages are provided as textual feedback. (2)

Dynamic checks run test cases, collect tracing data from each executed program step, and

compare program outputs to expected outputs. Typically, solutions gain points for each

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 5

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


passed test case. In case of errors, appropriate feedback messages can be provided for

each test case as well as a trace table for this test case [SG11]. (3) Metric checks calculate

some software metrics for solutions. Typically, they do not contribute to the grades, but

provide additional information on the solution that is presented as textual feedback. (4)

Visualizations can be created for object structures created during the execution of test

cases [SG10]. Typically, they also do not contribute to the grades, but help to illustrate

problems in form of graphical feedback.

3 Requirements and existing formats for the exchange of
programming tasks

In this section we first present requirements for a generic exchange format for programming

tasks which were derived from functionalities of existing systems. Three systems and their

features were already presented in the previous section in more detail. These three

systems already provide some insight into the spectrum of programming assessment and

learning systems. For a generic exchange format, however, we need to systematically

analyze a much broader spectrum of systems in order to derive their common

requirements. Many systems have been published in a scientific context and there are even

more systems in practical use which have not yet been extensively documented. Needless

to say that we can only systematically review the published systems and, thus, we

conducted a review on published programming assessment and learning systems which

deal with source code written by students. The main criterion was that a system had to

have been published since 2000 at scientific conferences or in journals related to learning

science and technology. We also considered technical reports that have passed some kind

of review process and have been published by their universities.

In the second part of this section, we then compare the derived requirements to existing

import/export and exchange formats.

3.1 Requirements for an exchange format for programming tasks

Programming tasks can be of very different size and complexity, and they can also be

designed in many different ways: In simple cases, some lines of code have to be filled into

a predefined code skeleton (often called “fill-in-the-gap”). In complex cases, complete

functions or classes have to be created that adhere to interface specifications given in a

task description. Depending on a programming language and programming environment,

file and folder structures have to be managed by the students as well.

With the exception of the simplest cases, programming tasks are not closed questions, in

which the correct answer is known beforehand and in which any solution can easily be

graded by comparison to a known sample solution. In fact, many programming tasks are

open questions for which no single solution or solution strategy exist [LLP13]. For open

questions, however, each submission can still be analyzed and graded with respect to

different criteria. For example, a static analysis can be applied to the submitted source

code in order to check syntax, use of specific constructs, or programming style. A dynamic

analysis can be applied as well by using unit or black-box tests if the interface is properly

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 6

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


described in the assignment description [Al05]. In order to execute such analyses, different

tools or environments as well as configuration files that are not visible to the students may

be necessary.

The functionality that is offered by existing tools often depends on the priorities and didactic

aims of the specific tool. Consequently, many different ways of defining tasks can be found

among existing systems. A useful exchange format, thus, has to cover a superset of all the

requirements reflected by different tools. Table 1 presents an overview of 33 tools which

sufficiently span the requirements space, and the requirements derived from the main tool

features. A similar, but smaller, analysis on a more technical level with similar results was

performed by [QL13]. Based on our analysis, a common exchange format needs task

designers to be able to specify

(R1) the description of the assignment/problem and the title;

(R2) which code skeletons are provided to the student for downloading or in a web-based

editor, and expected to be included in a submission;

(R3) which files are provided to the student for reference without expecting them in a

submission (e.g. code libraries);

(R4) in which structure and form (e.g. single files, zip archives, etc.) files are provided and

requested;

(R5) which additional files not visible to the student are attached to the task (e.g. test

drivers);

(R6) which checks and analyses are defined for this task and which conditions have to be

fulfilled to apply them;

(R7) which files contained in the task and of the particular solution are relevant for which

check or analysis;

(R8) which additional non-technical information (e.g. grading scheme, deadlines) are

attached to the task;

(R9) what a sample solution to the task looks like.

Requirements R2 to R4 are all related to the file handling between system and students.

Only few systems make explicit requirements with respect to this category, while most

systems accept arbitrary file attachments in submissions. Despite the fact that only some

systems explicitly model code skeletons (e.g. ELP and WPAS; R2) and reference files (R3),

some systems indeed implicitly make use of them: eClaus, for instance, does not have a

special field for code skeletons, however, it allows to link external files and embed images

in task descriptions (seen in [WW07] Figure 1). Also BOSS(2) allows to upload assignment

resources, however, it is not clear if those relate to R2 and/or R3.

Covering the core functionality such as task description, grading schemes, and analysis

configuration, the requirements R1, R5, and R8 are common to many systems.

Unsurprisingly, there is no system which does not provide a task description (R1). ELP and

Web-CAT are remarkable exceptions with respect to R5, as they use tests based on

comparisons to sample solutions or tests submitted by the students, respectively. Non-

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 7

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


technical information (R8) is handled very differently across the systems: Some systems

allow constructing very specific grading schemes (e.g. JACK) while others just rely on the

number of failed tests (e.g. Praktomat).

Requirements R6, R7, and R9 are explicitly stated by one fifth to nearly half of all systems

in our review. From the point of view of a particular system, these requirements can be

considered optional. Many, but not all systems offer different analysis techniques, so

configuration of individual checks may not be necessary if only a fixed set of analyses is

offered which are always performed. In particular, R7 is concerned with performance of

checks and, thus, irrelevant for systems that do not handle large additional files that are

only relevant for particular checks at all. In turn, sample solutions tackled by R9 are used

only in a few cases to generate actual tests as discussed above, but used as

supplementary and, thus, optional feedback in other systems. For example, they can be

requested by students after submitting their solutions in AutoGrader, JOP, and ELP. In

CourseMarker/CourseMaster it is possible for students to execute the teacher’s solution

with their own test/input data. CourseMarker/CourseMaster, eduComponents, Ludwig, and

ViPS use the output of a sample solution in order to compare it to the output of the

students’ solutions based on pre-generated or random input data. In Web-CAT and

ProgTest the students’ JUnit tests are tested against a sample solution as well as the

students’ own solutions.

Table 1 classifies the tools with respect to the nine requirements. For the purpose of

completing the table we considered the case of a programming task author who is aiming

at getting the optimal functionality out of the used tool. A cell containing an “x” in column

(Rn) means that the task author using the respective tool must be able to specify

information (Rn) in order to fully utilize that tool. An “x” does not define whether the

information (Rn) is mandatory for using the tool because sometimes tools replace missing

information with defaults. As a result, Table 1 provides an overview of which requirements

should be covered by a common task exchange format.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 8

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 9

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


System R1 R2 R3 R4 R5 R6 R7 R8 R9

Apogee [Fu08] X X X X

ASB [Mo07] X X X X X

AutoGrader

[No07]

X X X

BOSS(2) [JGB05] X T T X X X X X

CourseMarker/

CourseMaster

[Hi03]

X X X X X

DUESIE

[HQW08]

X X X X

eAixessor [AS‐

S08]

X X X X X

eClaus [WW07] X T T X X X X

eduComponents

[APR06]

X X X X X

ELP [Tr07] X X X X

GATE [SOP11] X X X X X X X X (X)

Graja [Stö13] X X X X X

JACK [SBG09] X X X X X X X X

JOP [Ei03] X X X X X X

Ludwig [Sh05] X X X X

Marmoset [Sp06] X X X

MOE [Ma09] X X X X

Mooshak [LS03] X X X X

Oto [Tr08] X X X X

Praktomat

[KSZ02]

X (X) X X X X (X)

ProgTest [SMB11] X X X X X

Quiver [EFK04] X X X X X

RoboProf [DH04] X X

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 10

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


SAC [Au08] X X

UVa OnlineJudge

[RML08]

X X X X

ViPS [Hü05] X X X X

VPL [RRH12] X X X X X X

Web-CAT [Ed04] X (X) (X) X X

WebTasks [RH08] X X

WeBWorK-JAG

[GSW07]

X X X X

WPAS [HW08] X X

xLx [SVW06] X X X X X

Table 1: Different systems for automated assessment of programming tasks and

their requirements with respect to task specifications. Empty cells indicate that no

information is available on whether the system states the respective requirement.

Markers in parentheses indicate requirements that depend on the tool version. “T”

marks special aspects which are described in the text.

3.2 Existing format specifications

Proprietary import and export functionality for tasks and tests is provided by some systems.

However, these are based solely on the requirements of “their” systems and, thus, can only

be re-imported into instances of the same system. For example, in the ELP system, fill-in-

the-gap tasks for Java and C++ including hints and solution can be specified, but an XML

DTD or XML schema definition is not available. Mooshak provides its own exchange format

which is based on an XML manifest referring file resources for problem statement, images,

input/output data, and sample solutions. JACK and Praktomat allow the export and import

of tasks in dedicated XML formats. No export functionality, but an XML specification for

Java black-box testing is provided by eClaus. Here, tests are not programmed as JUnit

tests, but have to be represented in XML.

As a response to the various system-specific task specifications and the lack of a widely

accepted standard, Queirós and Leal [QL13] proposed an extensible converter of different

(system-specific) programming exercises formats. However, it is limited to exercises

defined in the Mooshak and Peach Exchange Format [QL13].

Rather than dealing with system-specific task formats and specifications, there are also

approaches for system-independent formats: The most widely used standard for learning

objects is the IMS Content Packaging (IMS CP, [IMSCP]) of the IMC Global Learning

Consortiums [LQ09]. This specification describes how learning contents can be combined

and packaged (in a ZIP-file with a special manifest). Based on this generic specification,

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 11

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


standards such as “Sharable Content Object Reference Model” (SCORM, [SCORM]) and

“Question and Test Interoperability Specification” (QTI, [IMSQT]), a specification by

Cesarini et al. [CMM04] as well as two specifications developed by Leal and Queirós

[LQ09, QL11] especially for programming tasks have been proposed.

The SCORM reference model is restricted to exchangeable electronic learning content and

specifies a runtime environment (RTE) for LMS, content aggregations and navigation as

well as orders for the presentation of the content. The RTE only provides get and set

methods for basic variables for the communication of the learning resources with the LMS

(e.g. in order to store the learning progress). Therefore, it does not fulfill the requirements

presented in section 3.1. QTI, however, allows the exchange and automatic evaluation of

closed question types. Half-open question types (i.e., essays) can be modeled, however,

no automatic assessment is possible. As this standard was not designed for programming

tasks it only partly fulfills requirements R1, R2 and R8.

Cesarini et al. [CMM04] developed a specification for learning objects which also includes

programming tasks and can be automatically assessed by so-called “Test-Engines”. This

partially fulfills R1, R6 and R8. However, this specification allows only one test per learning

object and no automatic assessment of programming tasks.

The first approach of Leal and Queirós [LQ09] was developed in the context of a project

funded by the European Commission and allows to specify and to save programming tasks

including tests as learning objects as an extension to the IMS CP metadata standard called

“EduJudge Metadata”. The specification, however, was designed for only a single, fixed

assessment engine (EduJudge/Mooshak, [Ve11]) and fulfills our requirements R3, R5, R6

and R8 just partially. The website of the project is not accessible anymore and there is no

current information about the specification and usage available.

The second approach of Queirós and Leal [QL11] specifies the “Programming Exercises

Interoperability Language” (PExIL). The goal of their specification was to model the whole

life-cycle of programming tasks – starting with the problem formulation up to assessment

and feedback. By using PExIL, tasks and tests (including commands for compilation and

execution) for multiple, fixed, predetermined, (imperative) programming languages can be

modeled. However, only the requirements R1, R2, R5, R6, R8 and R9 are satisfied. Tests

as well as input data are encoded directly in XML and are, therefore, dependent on a

specific evaluation-engine which seems to support black-box tests only. Moreover, PExIL

seems to support tasks which only consist of a single solution-file. As a special feature to

be noted, this format also allows to model feedback and conditions where specific feedback

should be displayed, e.g. starting from a third attempt. An XML schema definition is

available, but insufficiently documented. The only system supporting this specification is

PETCHA [QL12] which was developed by the very same authors as the specification.

Independently of IMS CP the Peach Exchange Format [Ve08] for “Programming Contest”

systems was developed. This format has a strong dependency on the Peach system. It

supports different programming languages for tasks, however, only pure black-box tests

(input/output tests, script-controlled) are supported. The requirements R2, R3, R4, R7 and

R9 are not or only partially fulfilled.

Consequently, up to now there is no universal exchange format for programming tasks that

satisfies the requirements derived in section 3.1 and that can be used to exchange

programming tasks including test descriptions between systems.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 12

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


4 An XML exchange format for programming tasks

For each task the ProFormA format, described in this section of the paper, specifies a

description (including its language for the purpose of internationalization), its programming

language, supplied files, technical details of the submission, sample/model solutions and

optional hints for marking and meta-data. A task can contain several tests where each has

a test type (e.g. “unittest”) and a test configuration. Tests are often executed by standard

software engineering tools such as compilers, unit tests, style checkers and debugging

tools, and supplied in the format required by such tools. Therefore, the core ProFormA

format does not need to specify the details of the content of such tests but only the

parameters of their execution, for example tool names and version numbers. A system

which imports files in the ProFormA format can determine whether or not the files are

compatible with the system’s requirements by checking the test types.

The ProFormA format is XML-based and specified using an XML schema definition (cf.

[PFMA]). The main reasons for using XML are that it is a widely accepted and established

format for interoperability, that there are parsers available for various if not all programming

languages, and that it is human as well as machine-readable which is helpful for debugging

and adaptability. Furthermore, an XML schema definition allows to precisely specify all

aspects of possible XML documents (e.g. fine grained data types, unique key constraints

and logical structures), to validate XML documents if they comply to a specification and

supports the usage of different XML namespaces.

Figure 1 depicts the structure of the ProFormA format and the nesting of elements and

attributes. For referencing elements, XPath expressions are used. Elements which have

three lines in the upper left corner correspond to XML simple elements, usually containing

plain text, e.g. /task/description. Optional elements are surrounded by dashed lines (e.g. /

task/grading-hints). Octagonal boxes symbolize XML sequences. Their cardinalities are

provided unless they equal 1. The boxes with “any ##other” refer to possible extensions of

the format. The ProFormA format only formalizes the common denominator of

programming tasks. However, it can be extended to include tests from any other tool or

programming language by providing “hot spots” in the sense of software frameworks which

can be filled using format extensions defined in another XML namespace. The ProFormA

format is therefore sufficiently flexible to incorporate local, system-specific configurations

and novel testing tools. All specifications are versioned via their XML namespace URI in

order to support future changes and extensions. For example “urn:proforma:task:v0.9.4”

shows that this is the official ProFormA “task” specification in version “0.9.4”.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 13

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


Figure 1: Structure tree of the ProFormA exchange format XML schema definition (version

0.9.4)

A task specification using the ProFormA format can either be a standalone XML document

or a special layouted ZIP-archive whereby the XML document describing a programming

task has to be named “task.xml” and placed in the root directory of the ZIP-archive (similar

to the manifest file in IMS CP).

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 14

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


Some selected elements are discussed below in more detail, in particular with respect to

the requirements from section 3.1. Listing 1 shows a minimal example of a task described

in the ProFormA format. The task in this example consists of calculating the n-th Fibonacci

number via loops or recursion, as often used in introductory Java classes.

Being required by most systems, file attachments (R2, R3, R5 and R9) and their handling in

the ProFormA format are discussed first: For every file attached to a task there is a file

element in /task/files. Thus, all attached files are defined at a central place within the XML

document. A file element either holds the plain text contents of a file (cf. Listing 1 line 11ff)

or, if the task is packed in a ZIP-archive as described above, a filename reference to a file

in the ZIP-archive (cf. Figure 2). Both cases are distinguished by the type attribute which

either contains the value “embedded” as a default or “file”. Especially for the embedded file

case there is an optional filename attribute in order to specify how the file should be named

when used. This is for example required for Java where the class name “defines” the

filename and vice versa. Additionally there is a class attribute which specifies the intented

access rights and visibility for the file (R2, R3, R5). The ProFormA format provides the

following file classes: (Code-)templates/skeletons (template), libraries (library), input data

(inputdata), additional information or instructions to process a task (instruction), internal

libraries (e.g. libraries required for tests, internal-library) and internal files (e.g. test drivers

or model solutions, internal). Especially the latter two are classes of files which should not

be accessible to learners by default.

Figure 2: Example of files embedded into a ZIP-archive

Every file has a unique ID for referencing purposes (id attribute). In this manner a file can

be re-used in multiple contexts without the need to define multiple times (R7). Referencing

is done using a filerefs element containing one or more fileref elements – one for every file

reference. Eventually, a fileref element has a refid attribute which references the file ID of a

specific file (/task/files/file).

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 15

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


Listing 1: Example of a programming task specified in the ProFormA format version 0.9.4

Being semantically different from “normal” single files, model solutions (R9) are defined

within the /task/model-solutions element. For each model solution there is one model-

solution element which must have an unique ID (id attribute). It can also contain a human-

readable comment describing the model-solution (comment attribute). This is useful if

several model solutions are provided in order to point out their differences (e.g. an iterative

and a recursive implementation). A model solution refers to at least one file. This is

achieved using the already described filerefs/fileref elements where the filerefs element is

nested directly under the model-solution element (see lines 34ff in Listing 1). Furthermore,

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 16

https://www.eleed.de/archive/11/4138/listing1.xml.zip
https://www.eleed.de/archive/11/4138/listing1.xml.zip
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


there must be at least one model solution defined for each task. There are several reasons

for this decision. First, on the technical level, there are systems which must have a model

solution in order to compile JUnit tests provided as source code (e.g. GATE). In addition,

there are practical reasons, because a sample solution together with the task description

allows teachers to rate the difficulty and appropriateness of a task for the usage in their

own classes.

The next important aspect of the ProFormA format is the definition and configuration of

tests and evaluation methods (R5, R6 and R7): Tests can be defined in /task/tests/test

elements (R6, see Listing 1 lines 39ff). In addition to specifying which kinds of tests are

available for a task (for example compile/syntax or JUnit tests, test/test-type) it is possible

to specify the configuration of a test (test/test-configuration). The definition of test types is

also part of the ProFormA format in order to provide a shared set of possible types which

are consistently interpreted. However, it is still possible to extend the format by defining

personal test types. Extra files needed for a test such as test drivers are defined within /

task/files/file elements. They are referenced using their unique IDs within filerefs/fileref

elements (R5). In this manner it is known in advance which files are required for a test and

which are not (R7). In order to be able to exchange test type specific parameters such as

the name of the main class for a JUnit test, separate XML namespaces for every test type

within the test-configuration element can be used. The test-configuration/test-meta-data

element allows to use special namespaces to define system-specific meta-data which

belongs to a test (e.g. restrictions for tests).

As already stated above, test types use their personal XML namespace for configuration.

The test types “java-compilation” and “unittest” have been specified so far. The first official

type “java-compilation” (Listing 1 lines 42f) does not need any special configuration for a

minimal instance because the libraries to be used can be detected by referenced files and 

class of the files. JUnit tests, however, need a special configuration at least for the

canonical name of the main class which should be executed and should ideally describe

the version of the JUnit framework. Therefore, the unittest/main-class element in the XML

namespace “urn:proforma:tests:unittest:v1” was defined (Listing 1 lines 47ff). There is

nothing else needed for a minimal configuration as the system knows how to run the JUnit

tests using the main class file and the referenced files containing the JUnit test cases.

Tasks should usually be self-contained as only this condition guarantees that a task is

usable in the long-term without losing or missing components. In rare cases the use of

external resources is unavoidable. For example, an automatically graded task may need a

huge database dump or a large library that should not be bundled reasonably with the task

itself (R2, R3, R5). For these cases the /task/external-resources element was added so that

a task may reference the required external resources by a unique name (attribute 

reference). The semantics and format of external references are currently not standardized

in the ProFormA format. An example for an external resource is an URL of a widely known

database dump (e.g. ftp://ftp.fu-berlin.de/pub/misc/movies/database/ ). More complex

references can be included in a personal XML namespace. As an example consider a

Maven coordinate tuple identifying the name and version range of a library (a so called

“GAV”) consisting of a small XML snippet, e.g. “<groupId>org.jmock </

groupId><artifactId>jmock-junit4</artifactId><version>[2.4.0, 2.5.0]</version>”. The main

reason for the inclusion of external references in the current generic form is the usage

scenario described in section 6.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 17

ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


The /task/submission-restrictions element provides the option to define restrictions for

submissions of task solutions. For example, it is possible to specify the maximally allowed

file size (in byte) for a solution file which should be uploaded into the system (attribute max-

size). Of course, while this limit represents an expected maximum by the author of a

specific task, a system limitation can still be stricter (e.g. for security purposes). Constraints

for filenames can be specified via regular expressions using the attribute allowed-upload-

filename-regexp (line 8 in Listing 1). This is important for Java tasks where a class name

determines the filename when using the default class loader. If learners want to upload a

solution file for a task into a system, the system first verifies if all constraints of the specified

regular expression are satisfied by the filename. If this is not the case the system can

prevent learners from uploading their solution files and/or provide a warning. This is

intended to ensure that tests will not fail because of an invalid filename (R4).

An instance of the /task/description element includes the task’s description (R1, Listing 1

lines 2ff). Furthermore, it is possible to provide a grading scheme (/task/grading-hints) and

other meta-data (/task/meta-data). As existing systems use very different ways for defining

grading schemes (cf. JACK, ViPS, Web-CAT) and grading schemes are quite personal,

there is no common specification for this and the element was called “grading-hints”. In

analogy to the test-meta-data element, a personal XML namespace in the /task/grading-

hints element can be used to define system-specific details about grading schemes. The

ProFormA format also offers the opportunity to specify attributes belonging to tasks or tests

which are not relevant for all but for certain systems, to make sure that system specific

information does not get lost on a task export. In this manner, a complete task export into

the ProFormA format with subsequent lossless re-import of the task into the same system

can be guaranteed. Furthermore, this ensures that only data is imported into a system

which this system can handle (R8).

5 Compatibility and discussion

When discussing an interchange standard such as ProFormA, interesting questions are

which aspects to include and, finally, how to model them. The first question has two

extreme cases: On the one side there are specific aspects such as title, description, and

test configurations which are required by all or most systems and on the other side there

are specific aspects which are only used by one or very few systems such as sample

solutions or reference files (cf. Table 1). The first case is quite clear; those aspects are

important and, thus, have to be included. Elements of the latter extreme case are unlikely

to be included as required features in the core format specification. All aspects between the

two extremes are subject to discussion. The second question is always subject to

discussion in order to achieve justified design decisions.

Our proposed specification is supported by the three systems, GATE, JACK, and an

enhanced Praktomat version, described in section 2, for exporting and importing

programming tasks. The initial focus on Java tasks is due to the fact that the three systems

used by the authors mainly deal with Java tasks and also most systems of our review

support Java (cf. Table 2 in the appendix for the concrete systems). Furthermore, half of the

systems explicitly state that JUnit is used (cf. Table 2). Only 11 out of the 33 reviewed

systems state explicitly or indirectly that JUnit is not used. Oftentimes these systems do not

deal with Java or use other testing methods (cf. Table 2). The ProFormA exchange format

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 18

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


has been implemented and tested by the tree systems for more than one year. However,

the design of the format is not solely based on these three systems but also on

requirements of other systems, especially ViPS using Prolog and LON-CAPA external

response [LONCM] as well as others mentioned in section 3.1. This ensures that the

specification does not only implement requirements of a single system or only supports

some programming languages as it is the case for most existing specifications (cf. section

3.2). In addition, the ProFormA format is not designed as a fixed “one-size-fits-all”

specification. It does not ignore system-specific aspects, but those can be embedded with

freely definable XML namespaces as extensions. Extensions for individual systems, new

programming languages as well as novel test types are supported. Extensibility using XML

namespaces, however, harbors the risk that fundamental aspects are defined multiple

times or in different ways. In order to mitigate this risk, on the one hand, we believe that all

fundamental aspects have already been defined in the ProFormA format itself and, on the

other hand, the proposed format is versioned. Therefore, changes, additions and moving of

“wide-spread” aspects into the core format are possible without losing compatibility for

existing tasks.

Metadata for categorization was deliberately not included in the first version of the

specification. For metadata, there are, on the one hand, established standards such as

IEEE Learning Objects Metadata (LOM) and Dublin Core and, on the other hand, these are

often not fully used by authors of learning material [Go04], possibly due to motivational

aspects because the author who creates the meta-data is usually not the person who

benefits from it. Instead, at least one sample solution is required in the ProFormA format.

This should allow potential users of tasks to rate them according to difficulty and

appropriateness, thereby judging whether or not a task fits into their course.

Restrictions for filenames of requested files (R4) are a requirement of just some systems.

However, we decided to include this into the format specification (/task/submission-

restrictions element) with the optional allowed-upload-filename-regexp attribute. The

rationale is that this does not cause harm if ignored or unsupported by systems, but can

help to prevent failures of tests (see section 4). An alternative way which explicitly specifies

all required filenames ensuring that no file is missing (as used in e.g. JACK) is under

discussion. The explicit statement of filenames can easily be converted using the existing 

allowed-upload-filename-regexp attribute, however, the opposite direction is not possible.

A special editor is, in principle, not needed for the ProFormA format, since each system

already provides its own authoring functionality. However, the development of a system-

independent editor is planned which can be extended by plugins to support system-specific

aspects – especially with respect to the usage scenario described in section 6. Also, a

dedicated editor would allow for creating tasks system-independently.

In addition to the export functionality, support for importing tasks has been implemented for

the three systems described in section 2. In this context, cross-system imports, which

export from one system and import into another system, and same-system imports/exports

were carried out for testing purposes for these tree systems. In principle an export is

possible from all three systems (GATE, JACK and the enhanced Praktomat). However, in

the JACK system there are no model solutions available and, thus, the necessary model

solutions are not yet exported up to now. GATE and Praktomat generate fully valid XML

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 19

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


documents complying with version 0.9.1 of the specification. Support for the new version

0.9.4 is currently being implemented for these systems and is already available in

Praktomat.

A same-system and inter-system import is possible for each of the three systems in

principle. However, it is not always guaranteed that all features of an imported task which

was previously exported from another system are fully re-usable. On the one hand, this is

due to the supported assessment procedures of the importing vs. exporting system and, on

the other hand, because of the special system features which separate different systems.

For example, all three systems are used for Java programming tasks. GATE currently only

supports JUnit 3 tests and Praktomat supports several JUnit versions (hence the use of

JUnit3 in Listing 1). Therefore, syntax and JUnit3 test procedures can be shared between

these two systems without losing functionality. The JACK system, however, does not

support JUnit tests. It relies on other methods which are currently exclusive to the JACK

system. Nevertheless, system-specific elements can be exported in the form of metadata

using the elements /task/meta-data and /task/tests/test/test-configuration/test-meta-data.

As already mentioned above, the essential elements of programming tasks are shareable

across systems, and also same-system imports are possible without losing information.

6 Integration of learning management systems and programming
support systems

Learning management systems such as LON-CAPA [LONC], Stud.IP [STDIP], OLAT

[OLAT], or Moodle [MOOD] are widely used in educational contexts and have their own

user management, tools for communication, such as e-mail or forums, and sophisticated

course management features. These tools can be seen as general purpose support tools in

this context. Hence, they usually cannot assess computer science exercises or

programming tasks. Many of the systems mentioned in section 3.1 are well-suited for this

purpose (depending on their particular goals). Nevertheless, nearly all of the systems seem

to be stand-alone (cf. Table 2 in the appendix), having their own user management but

usually without sophisticated course management features. Thus, these programming

assessment systems are called “grading systems” (GS) in this section as the grading

functionality is the focus. Additionally, GSs tend to be specialized for the assessment of

programming tasks in specific programming languages using a fixed set of test types. As a

consequence LMSs and programming assessment systems are often either used side by

side in various LMS and GS combinations or only a single system with a limited feature set.

An obvious idea is to combine the advantages of both system types, LMSs and GSs, in

order to get the “best of both worlds” using the course management and community

features from an LMS and adding the special features of grading systems. A first simple

connection would be to bridge the gap between these distinct tools by employing some kind

of secure link to the other system combined with an auto-login feature. This approach is

used by the JACK system in combination with Moodle, or in eClaus with OLAT/OPAL. The

IMS Learning Tool Interoperability (LTI, [IMSLT]) standard provides such a feature and also

allows an external tool to pass learning or assessment results back to the calling LMS.

However, when a student clicks on the secure link, full control is handed to the external tool

which means that the student is directly interacting with the external tool. This often has a

layout and handling that is completely different from the LMS. Furthermore, just providing a

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 20

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


login is not sufficient for exchanging complex assessment data between the systems. A

slightly more complex connection would be to integrate an assessment plugin directly into

an LMS or to write a GS specific wrapper (ViPS, VPL, WeBWorK-JAG, or planned by SAC

[Au08]). This, however, might have security implications or limits the usage of different GS

at the same time.

Figure 3: Proposed middleware architecture for LMS-grader integration

A more flexible solution could be an architecture incorporating a special middleware which

supports a detailed and secure data exchange between the systems based on the

ProFormA format and a yet to be determined exchange protocol (cf. Figure 3): Lecturers as

well as students utilize their preferred web clients for connecting to their usual LMS. Within

this familiar learning environment, students can work on programming tasks which are

stored within the LMS. Assessment and feedback generation is dealt with transparently by

one or multiple external GSs which can even be of different types. The GSs are connected

to the LMS using a middleware which only needs to send the task specification utilizing the

ProFormA format and the student solution to the grader.

Such a middleware architecture has multiple advantages: It allows an LMS to use different

GSs, it can implement load balancing for multiple GSs of the same type, and at the same

time it hides the complexity of the connection details and of the data exchange. Thus it

simplifies the interfaces at both ends – for the LMS and for the GS. A properly designed

middleware can easily be re-used by different LMS and, therefore, lower the requirements

for changes/extensions necessary to a specific LMS.

Special attention needs to be given to the results and feedback generated by the GS. In the

proposed architecture, graders are concerned with generating feedback about a

submission received from the middleware. Feedback usually consists of a grade, or a

score, a percentage or just a boolean value and some documentation about the GS’s

results. Documentation can range from a simple text (e.g., in form of a console dump) over

XML documents with markup for message categories and message content to complete

documents that are ready for immediate presentation to the user such as HTML, PDF,

images or other media types. Some GSs can generate separate feedback for students and

teachers at different levels of detail. Just as the ProFormA format of this paper aims at

covering any programming exercise configuration and description, a unifying feedback

format is needed that covers grading results from any grader. Ideally, an LMS should allow

students and teachers to inspect the results working with the user interface of the familiar

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 21

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


LMS. Many LMSs already support the concept of manually or automatically graded

assignments. Extending an LMS so that it will integrate grader results into its LMS-specific

assignment concept is less costly under the assumption of a unifying grading feedback

format. Currently we are eliciting the respective requirements from several GSs and

learning management systems for such a unifying format.

Two prototypes have been developed to serve as a connector component between LMS

and GS. In [PJR12a] an LMS (LON-CAPA) is connected to a grader (Praktomat) with the

help of a dedicated middleware server. Another implementation describes the “Grappa”

server, which connects the LMS Moodle to the grader aSQLg [Stö14]. Both prototypes are

either capable of or currently being developed towards supporting the ProFormA format

described in this paper. But none of the systems already uses a shared feedback format.

7 Summary and future work

In this article, specific requirements for a special exchange format for programming tasks

were presented. Based on these requirements, an XML-based exchange format called

ProFormA was derived. This format can be used for the exchange of programming tasks

across systems. This schema is not a "one-size-fits-all" specification for fixed languages

and test types, but a format which allows the use of different XML namespaces for

extensibility. Consequently, this specification provides a good basis for increasing the

interoperability between different systems. Export and import functionality using the

ProFormA format is already available in several systems: Essential elements of

programming tasks that were exported in the ProFormA format can be imported into these

systems. Thus, a cross-system sharing of tasks using the ProFormA format has proven to

be feasible. In principle, all 33 systems reviewed in section 3.1 could make use of it.

The next steps in our work include the refinement of the elements of the described

specification and the integration with other systems: in stand-alone systems for import and

export as well as usage for LMS-GS communication. The current version of the ProFormA

format builds the basis for sharing the integral elements of programming tasks. Future

refinements might include parametric exercises, exercise bundling and further aspects

regarding security and runtime limitations of tests. Also, a formal way for suggesting new

test type specifications for inclusion in the “official” ProFormA format will need to be

developed.

For ease of sharing, a repository of programming tasks described in the ProFormA

specification shall be set up in the future, so that tasks can be searched and imported

directly into a specific system. A repository provides an opportunity to increase the quality

of teaching by repeated usage of good tasks, especially across different universities. This

does not mean that a separate repository needs to be built, the utilization of existing

repositories is explicitly not ruled out. However, there are important requirements on a

shared repository of programming tasks: Especially, it is of particular significance that

access to the complete task specifications is restricted in a way so that learners cannot

“cheat” by using the model-solutions given in the tasks (cf. LON-CAPA, [LONC]).

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 22

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


References

[Al05] Ala-Mutka, K.: A Survey of Automated Assessment Approaches for Programming

Assignments. In: Computer science education, 15(2), 2005, pp. 93-102.

[APR06] Amelung, M.; Piotrowski, M.; Rösner, D.: eduComponents: experiences in e-

assessment in computer science education. In: Proc. ITiCSE’06, 2006, pp. 88-92.

[AR08] Amelung, M.; Rösner, D.: Experiences in Hybrid Learning with eduComponents. In:

Hybrid Learning and Education. Springer, Berlin Heidelberg, 2008, pp. 259-270.

[ASR06] Ahtiainen, A.; Surakka, S.; Rahikainen, M.: Plaggie: GNU-licensed source code

plagiarism detection engine for Java exercises. In: Proc. Baltic Sea conference on

Computing education research. ACM, New York, NY, USA, 2006, pp. 141–142.

[ASS08] Altenbernd-Giani, E.; Schroeder, U.; Stalljohann, P.: eAixessor - A Modular

Framework for Automatic Assessment of Weekly Assignments in Higher Education. In:

Proc. IASTED’08, 2008, p. 99.

[Au08] Auffarth, B.; López-Sánchez, M.; Miralles, J. C.; Puig, A.: System for Automated

Assistance in Correction of Programming Exercises (SAC). In Proc. CIDUI’08, 2008, pp.

104-113

[CMM04] Cesarini, M.; Mazzoni, P.; Monga, M.: Learning Objects and Tests. In: The

IASTED International Conference on Web-Based Education, 2004, pp. 520-524.

[DGNU] DejaGNU, GNU Project. https://www.gnu.org/software/dejagnu/ (last check

2015-02-26)

[DH04] Daly, C.; Horgan, J. M.: An automated learning system for Java programming. In:

Education, IEEE Transactions on Education, 47(1), 2004, pp. 10-17.

[Ed04] Edwards, S. H.: Using software testing to move students from trial-and-error to

reflection-in-action. In ACM SIGCSE Bulletin 36(1), 2004, pp. 26-30.

[EFK04] Ellsworth, C. C.; Fenwick Jr, J. B.; Kurtz, B. L.: The quiver system. In: ACM

SIGCSE Bulletin, 36(1), 2004, pp. 205-209.

[Ei03] Eichelberger, H.; Fischer, G.; Grupp, F.; Von Gudenberg, J. W.:

Programmierausbildung Online. In: Proc. DeLFI’03, 2003, pp. 134-143.

[Fu08] Fu, X.; Peltsverger, B.; Qian, K.; Tao, L.; Liu, J.: APOGEE: automated project

grading and instant feedback system for web based computing. In: ACM SIGCSE Bulletin,

40(1), 2008, pp. 77-81.

[GATE] https://cses.informatik.hu-berlin.de/research/details/gate/ , https://github.com/

csware/si/ , (last check 2015-02-26)

[Go04] Godby, C. J.: What Do Application Profiles Reveal about the Learning Object

Metadata Standard? In: Adriane Article in eLearning Standards, 2004.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 23

https://www.gnu.org/software/dejagnu/
https://www.gnu.org/software/dejagnu/
https://cses.informatik.hu-berlin.de/research/details/gate/
https://cses.informatik.hu-berlin.de/research/details/gate/
https://github.com/csware/si/
https://github.com/csware/si/
https://github.com/csware/si/
https://github.com/csware/si/
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


[GSW07] Gotel, O.; Scharff, C.; Wildenberg, A.: Extending and contributing to an open

source web-based system for the assessment of programming problems. In: Proc.

international symposium on Principles and practice of programming in Java, 2007, pp.

3-12.

[HQW08] Hoffmann, A.; Quast, A.; Wismüller, R.: Online-Übungssystem für die

Programmierausbildung zur Einführung in die Informatik. In: Proc. DeLFI‘08, 2008, pp.

173-184.

[Hü05] Hügelmeyer, P.; Mertens, R.; Schröder, M.; Gust, M.: Integration des Virtuellen

Prüfungssystems ViPS in die Lehr-/Lernplattform Stud.IP. In: Proc. Workshop on e-

Learning 2005, HTWK Leipzig, pp. 187-196.

[HW08] Hwang, W. Y.; Wang, C. Y.; Hwang, G. J.; Huang, Y. M.; Huang, S.: A web-based

programming learning environment to support cognitive development. In: Interacting with

Computers, 20(6), 2008, pp. 524-534.

[Ih10] Ihantola, P.; Ahoniemi, T.; Karavirta, V.; Seppälä, O.: Review of recent systems for

automatic assessment of programming assignments. In: Proc. Koli Calling‘10, pp. 86-93.

[IMSCP] IMS Global Learning Consortium. Content Packaging Specification. http://

www.imsglobal.org/content/packaging/ (last check 2015-02-26)

[IMSLT] IMS Global Learning Consortium. IMS Learning Tools Interoperability (LTI)

Implementation Guide. http://www.imsglobal.org/lti/ltiv2p0/ltiIMGv2p0.html (last check

2015-02-26)

[IMSQT] IMS Global Learning Consortium. IMS Question & Test Interoperability™

Specification. http://www.imsglobal.org/question/ (last check 2015-02-26)

[JACK] http://www.s3.uni-duisburg-essen.de/research/jack.html (last check 2015-02-26)

[JGB05] Joy, M.; Griffiths, N.; Boyatt, R.: The boss online submission and assessment

system. In: JERIC, 5(3), 2005, p. 2.

[JUNIT] https://junit.org (last check 2015-02-26)

[KJ13] Kruse, M.; Jensen, N.: Automatische Bewertung von Datenbankaufgaben unter

Verwendung von LON-CAPA und Praktomat. Proc. Workshop Automatische Bewertung von

Programmieraufgaben, ABP’13, 2013.

[KSZ02] Krinke, J.; Störzer, M.; Zeller, A.: Web-basierte Programmierpraktika mit

Praktomat. In: Softwaretechnik-Trends, 22(3), 2002, pp. 51-53.

[LLP13] Le, N. T.; Loll, F.; Pinkwart, N.: Operationalizing the Continuum between Well-

defined and Ill-defined Problems for Educational Technology. In: IEEE Journal Transactions

on Learning Technologies, 2013, 6(3), pp. 258-270.

[LONC] The LearningOnline Network with CAPA. http://loncapa.org (last check 2015-02-26)

[LONCM] Learning Online Network with CAPA. Author’s Tutorial And Manual. https://

loncapa.msu.edu/adm/help/author.manual.pdf (last check 2015-02-26)

[LQ09] Leal, J. P.; Queirós, R.: Defining Programming Problems as Learning Objects. In:

Proc. ICCEIT’09, 2009.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 24

http://www.imsglobal.org/content/packaging/
http://www.imsglobal.org/content/packaging/
http://www.imsglobal.org/content/packaging/
http://www.imsglobal.org/content/packaging/
http://www.imsglobal.org/lti/ltiv2p0/ltiIMGv2p0.html
http://www.imsglobal.org/lti/ltiv2p0/ltiIMGv2p0.html
http://www.imsglobal.org/question/
http://www.imsglobal.org/question/
http://www.s3.uni-duisburg-essen.de/research/jack.html
http://www.s3.uni-duisburg-essen.de/research/jack.html
https://junit.org/
https://junit.org/
http://loncapa.org/
http://loncapa.org/
https://loncapa.msu.edu/adm/help/author.manual.pdf
https://loncapa.msu.edu/adm/help/author.manual.pdf
https://loncapa.msu.edu/adm/help/author.manual.pdf
https://loncapa.msu.edu/adm/help/author.manual.pdf
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


[LS03] Leal, J. P.; Silva, F.: Mooshak: A Web‐based multi‐site programming contest system.

In: Software: Practice and Experience, 33(6), 2003, pp. 567-581.

[Ma09] Mareš, M.: MOE – Design of a modular grading system. In: Olympiads in

Informatics, 3, 2009, pp. 60-66.

[Mo07] Morth, T.; Oechsle, R.; Schloß, H.; Schwinn, M.: Automatische Bewertung

studentischer Software. In: Proc. Pre-Conference Workshops der DeLFI’07, 2007.

[MOOD] Moodle - Open-source learning platform. https://moodle.org (last check

2015-02-26)

[No07] Nordquist, P.: Providing accurate and timely feedback by automatically grading

student programming labs. In: Journal of Computing Sciences in Colleges, 23(2), 2007, pp.

16-23.

[OLAT] OLAT Lernmanagement. https://www.bps-system.de/cms/produkte/olat-

lernmanagement/ (last check 2015-02-26)

[PFMA] ProFormA specification and whitepaper. https://github.com/ProFormA/taskxml (last

check 2015-02-26)

[PJR12] Priss, U.; Jensen, N.; Rod, O.: Software for E-Assessment of Programming

Exercises. In: Informatik 2012, GI LNI, P-208, pp. 1786-1791.

[PJR12a] Priss, U.; Jensen, N.; Rod, O.: Software for Formative Assessment of

Programming Exercises. In: elearning Baltics 2012, Proc. International eLBa Science

Conference, 2012, pp. 63-72.

[PRAK] https://github.com/KITPraktomatTeam/Praktomat (last check 2015-02-26)

[QL11] Queirós, R.; Leal, J. P.: Pexil: Programming exercises interoperability language. In:

Proc. Conferência - XML: Aplicações e Tecnologias Associadas (XATA), 2011.

[QL12] Queirós, R.; Leal, J. P.: PETCHA: a programming exercises teaching assistant. In:

Proc. ACM ITiCSE’12, 2012, pp. 192-197.

[QL13] Queirós, R.; Leal, J. P.: BabeLO – An Extensible Converter of Programming

Exercises Formats. In: IEEE Transactions on Learning Technologies, 6(1), 2013, pp. 38-45.

[Re89] Reek, K. A.: The TRY system-or-how to avoid testing student programs. In: ACM

SIGCSE Bulletin, 21(1), 1989, pp. 112-116.

[RH08] Rößling, G.; Hartte, S.: WebTasks: online programming exercises made easy. In:

ACM SIGCSE Bulletin, 40(3), 2008, pp. 363-363.

[RML08] Revilla, M. A.; Manzoor, S.; Liu, R.: Competitive learning in informatics: The UVa

Online Judge Experience. In: Olympiads in Informatics, 2, 2008, pp. 131-148.

[Ro07] Romeike, R.: Three Drivers for Creativity in Computer Science Education. In: Proc.

of Informatics, Mathematics and ICT: a 'golden triangle'. Boston, US, 2007.

[RRH12] Rodríguez-del-Pino, J.; Rubio-Royo, E.; Hernández-Figueroa, Z.: A Virtual

Programming Lab for Moodle with automatic assessment and anti-plagiarism features. In:

Proc. CSREA EEE’12, 2012.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 25

https://moodle.org/
https://moodle.org/
https://www.bps-system.de/cms/produkte/olat-lernmanagement/
https://www.bps-system.de/cms/produkte/olat-lernmanagement/
https://www.bps-system.de/cms/produkte/olat-lernmanagement/
https://www.bps-system.de/cms/produkte/olat-lernmanagement/
https://github.com/ProFormA/taskxml
https://github.com/ProFormA/taskxml
https://github.com/KITPraktomatTeam/Praktomat
https://github.com/KITPraktomatTeam/Praktomat
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


[SBG09] Striewe, M.; Balz, M.; Goedicke, M.: A Flexible and Modular Software Architecture

for Computer Aided Assessments and Automated Marking. In: Proc. CSEDU’09, 2009, pp.

54-61.

[SCORM] Rustici Software. Technical SCORM. http://scorm.com/scorm-explained/

technical-scorm/ (last check 2015-02-26)

[SG10] Striewe, M.; Goedicke, M.: Visualizing Data Structures in an E-Learning System. In:

Proc. CSEDU’10, 2010, pp. 172-179.

[SG11] Striewe, M.; Goedicke, M.: Using Run Time Traces in Automated Programming

Tutoring. In: Proc. ACM SIGCSE ITiCSE’11, 2011, pp. 303-307.

[SG13] Striewe, M.; Goedicke, M.: JACK revisited: Scaling up in multiple dimensions. In:

Proc. EC-TEL 2013, 2013, pp. 635-636.

[Sh05] Shaffer, S. C.: Ludwig: an online programming tutoring and assessment system. In:

ACM SIGCSE Bulletin, 37(2), 2005, pp. 56-60.

[SMB11] de Souza, D. M.; Maldonado, J. C.; Barbosa, E. F.: ProgTest: An environment for

the submission and evaluation of programming assignments based on testing activities. In:

IEEE Software Engineering Education and Training (CSEE&T), 2011, pp. 1-10.

[SOP11] Strickroth, S.; Olivier, H.; Pinkwart, N.: Das GATE-System: Qualitätssteigerung

durch Selbsttests für Studenten bei der Onlineabgabe von Übungsaufgaben? In: Proc.

DeLFI’11, 2011, pp. 115-126.

[St14] Strickroth, S.; Striewe, M.; Müller, O.; Priss, U.; Becker, S.; Bott, O. J.; Pinkwart, N.:

Wiederverwendbarkeit von Programmieraufgaben durch Interoperabilität von

Programmierlernsystemen. In: Proc. DeLFI‘14, 2014, pp. 97-108.

[STDIP] Stud.IP-Portal: Stud.IP 3: Das Portal. Projekt, Informationen und Ressourcen. 

http://studip.de (last check 2015-02-26)

[Stö13] Stöcker, A.; Becker, S.; Garmann, R.; Heine, F.; Kleiner, C.; Bott, O. J.: Evaluation

automatisierter Programmbewertung bei der Vermittlung des Sprachen Java und SQL mit

den Gradern aSQLg und Graja aus studentischer Perspektive. In: Proc. DeLFI‘13, 2013,

pp. 233-238.

[Stö14] Stöcker, A.; Becker, S.; Garmann, R.; Heine, F.; Kleiner, C.; Werner, P.; Grzanna,

S.; Bott, O. J.: Die Evaluation generischer Einbettung automatisierter Programmbewertung

in Moodle. In: Proc. DeLFI‘14, 2014, pp. 301-304.

[Sp06] Spacco, J.; Hovemeyer, D.; Pugh, W.; Emad, F.; Hollingsworth, J. K.; Padua-Perez,

N.: Experiences with Marmoset: Designing and using an advanced submission and testing

system for programming courses. In: ACM SIGCSE Bulletin 38(3), 2006, pp. 13-17.

[SVW06] Schwieren, J.; Vossen, G.; Westerkamp, P.: Using software testing techniques for

efficient handling of programming exercises in an e-learning platform. In: The Electronic

Journal of e-Learning, 4(1), 2006, pp. 87-94.

[SW06] Stevenson, D. E.; Wagner, P. J.: Developing real-world programming assignments

for CS1. In: ACM SIGCSE Bulletin, 38(3), 2006, pp. 158-162.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 26

http://scorm.com/scorm-explained/technical-scorm/
http://scorm.com/scorm-explained/technical-scorm/
http://scorm.com/scorm-explained/technical-scorm/
http://scorm.com/scorm-explained/technical-scorm/
http://studip.de/
http://studip.de/
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


[Tr07] Truong, N.: A Web-Based Programming Environment for Novice Programmers. PhD

Thesis, 2007: http://eprints.qut.edu.au/16471/1/Nghi_Truong_Thesis.pdf (last check

2015-02-26)

[Tr08] Tremblay, G.; Guérin, F., Pons, A.; Salah, A.: Oto, a generic and extensible tool for

marking programming assignments. In: Software: Practice and Experience, 38(3), 2008,

pp. 307-333.

[Ve08] Verhoeff, T.: Programming Task Packages: Peach Exchange Format. In: Olympiads

in Informatics, 2, 2008, pp. 192–207.

[Ve11] Verdú, E.; Regueras, L. M.; Verdú, M. J.; Leal, J. P.; de Castro, J. P.; Queirós, R.: A

distributed system for learning programming on-line. In: Computers & Education 58(1),

2011, pp. 1-10.

[WW07] Weicker, N.; Weicker, K.: Automatische Korrektur von Programmieraufgaben – Ein

Erfahrungsbericht. In: Flexibel integrierbares e-Learning - Nahe Zukunft oder Utopie, Proc.

Workshop on e-Learning 2007, pp. 159-173.

Acknowledgements

The work of the authors Becker, Müller, Priss and Rod has been partially funded by the

German Federal Ministry of Education and Research (BMBF) under grant numbers

01PL11066H and 01PL11066L.

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 27

http://eprints.qut.edu.au/16471/1/Nghi_Truong_Thesis.pdf
http://eprints.qut.edu.au/16471/1/Nghi_Truong_Thesis.pdf
https://nbn-resolving.de/urn:nbn:de:0009-5-41389


Appendix

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 28

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 29

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


System Dealing with Java

tasks

Using JU‐

nit

Stan‐

dalone

Apogee [Fu08] ? no X

ASB [Mo07] X X X

AutoGrader [No07] X ? ?

BOSS(2) [JGB05] X X X

CourseMarker/

CourseMaster [Hi03]

no no X

DUESIE [HQW08] X X X

eAixessor [ASS08] X no X

eClaus [WW07] X no X

eduComponents

[APR06]

X no no

ELP [Tr07] X no X

GATE [SOP11] X X X

Graja [Stö13] X X no

JACK [SBG09] X no X

JOP [Ei03] X X X

Ludwig [Sh05] no no X

Marmoset [Sp06] X X X

MOE [Ma09] no no X

Mooshak [LS03] X no X

Oto [Tr08] X X X

Praktomat [KSZ02] X X X

ProgTest [SMB11] X X X

Quiver [EFK04] X no X

RoboProf [DH04] X no X

SAC [Au08] X X X

UVa OnlineJudge [RM‐

L08]

X, in newer version ? X

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 30

https://nbn-resolving.de/urn:nbn:de:0009-5-41389


ViPS [Hü05] no no no

VPL [RRH12] X X no

Web-CAT [Ed04] X X X

WebTasks [RH08] X X X

WeBWorK-JAG

[GSW07]

X X no

WPAS [HW08] no no ?

xLx [SVW06] X X X

Table 2: Reviewed systems and their properties regarding support of Java tasks,

support of JUnit, and system architecture.

Additional Material

Whitepaper (Version 0.9.4): whitepaper_094-md.html

Official XSD: taskxml.xsd.zip

Example of a programming task specified in the ProFormA format version 0.9.4: 

listing1.xml.zip

• 

• 

• 

Strickroth, S., Striewe, M., Müller, O., Priss, U., Becker, S., Rod, O., Garmann, R., Bott, O. J., Pinkwart, N. (2015). ProFormA: An XML-based

exchange format for programming tasks. eleed, Issue 11

eleed urn:nbn:de:0009-5-41389 31

https://www.eleed.de/archive/11/4138/whitepaper_094-md.html
https://www.eleed.de/archive/11/4138/whitepaper_094-md.html
https://www.eleed.de/archive/11/4138/taskxml.xsd.zip
https://www.eleed.de/archive/11/4138/taskxml.xsd.zip
https://www.eleed.de/archive/11/4138/listing1.xml.zip
https://www.eleed.de/archive/11/4138/listing1.xml.zip
https://nbn-resolving.de/urn:nbn:de:0009-5-41389

	ProFormA: An XML-based exchange format for programming tasks
	1 Introduction and motivation
	2 Three examples of programming assessment systems
	2.1 GATE
	2.2 Praktomat
	2.3 JACK

	3 Requirements and existing formats for the exchange of programming tasks
	3.1 Requirements for an exchange format for programming tasks
	3.2 Existing format specifications

	4 An XML exchange format for programming tasks
	5 Compatibility and discussion
	6 Integration of learning management systems and programming support systems
	7 Summary and future work
	References
	Acknowledgements
	Appendix
	Additional Material

